Application Note

Timekeeping with Z8
Microcontrollers

AN003401-Z8X0500

ZILOG WORLDWIDE HEADQUARTERS * 910 E. HAMILTON AVENUE * CAMPBELL, CA 95008
TELEPHONE: 408.558.8500 « FAX: 408.558.8300 « www.ZILOG.com

Application Note
Timekeeping with Z8 Microcontrollers

&
O(’dQ
A

This publication is subject to replacement by a later edition. To determine whether a later edition
exists, or to request copies of publications, contact:

ZiLOG Worldwide Headquarters
910 E. Hamilton Avenue

Campbell, CA 95008

Telephone: 408.558.8500

Fax: 408.558.8300
www.ZiLOG.com

Windows is a registered trademark of Microsoft Corporation.

Information Integrity

The information contained within this document has been verified according to the general
principles of electrical and mechanical engineering. Any applicable source code illustrated in the
document was either written by an authorized ZiLOG employee or licensed consultant. Permission
to use these codes in any form, besides the intended application, must be approved through a
license agreement between both parties. ZiLOG will not be responsible for any code(s) used
beyond the intended application. Contact the local ZILOG Sales Office to obtain necessary license
agreements.

Document Disclaimer

© 2000 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices,
applications, or technology described is intended to suggest possible uses and may be
superseded. ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A
REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY
DESCRIBED IN THIS DOCUMENT. ZiLOG ALSO DOES NOT ASSUME LIABILITY FOR
INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF
INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. Except
with the express written approval ZiLOG, use of information, devices, or technology as critical
components of life support systems is not authorized. No licenses or other rights are conveyed,
implicitly or otherwise, by this document under any intellectual property rights.

AN003401-Z8X0500

Application Note
Timekeeping with Z8 Microcontrollers

&
O(’dQ
A

Table of Contents

General OVerViEW 1
DISCUSSION 1
Theory of Operation 1
SUMMIAIY . . 3
Technical SUPPOrt 3
Source Code e 3
Timing Diagramsand Tables 18
Technical Drawings i e e e 19
Test Procedure 29
Equipment Used 29
General Test Setupand Execution 29
TestResults 29
Appendix 30
Schematics 30
Acknowledgements

Project Engineer
Mark Thissen

AN003401-Z8X0500

Application Note
Timekeeping with Z8 Microcontrollers

—

&
a(,o

<

o
'\.,\\: |

Timekeeping with Z8 Microcontrollers

General Overview

Many microcontroller applications track time by using what is commonly called a
Real Time Clock (RTC). For example, the controller may be required to turn a
solenoid switch or a relay on or off at an appropriate time. Or, the controller may
monitor an input and return a value at a defined time. Whatever the requirement,
the use of an RTC can be the answer. From the code that develops an RTC using
the microcontroller crystal, a battery-powered watch can be developed by using a
different lower-powered device with a low-power oscillator and the watch-dog
option.

Discussion

Theory of Operation

There are many ways to accomplish the task of real timekeeping. The first portion
of this discussion focuses on implementing a real time clock based on the 60-Hz
line frequency of a 120 VAC input.

In this example, a 120 VAC input develops the power supply and a digital input to
Port 3 (2). The input to Port 3 (2) generates a falling edge interrupt (IRQ0) that
becomes the time base. A transformer with a 6.3 VCT secondary generates the
DC power and the AC input to Port 3 (2). There are different designs of power
supplies, and the schematic pages of this application note illustrate two of those
designs. Choose an elaborate or a simple one, depending on the requirements.
Take the secondary waveform voltage, divide the voltage across a pair of 100-KQ
resistors, and feed that signal directly into the Port 3 (2) digital input. This signal
generates 60 falling-edge interrupts per second. From this time base, increment
the various registers to track the time (milliseconds, seconds, minutes, hours).
The frequency on the AC lines is accurate and works well for this application. Not
only does this application track the time, but it also tracks a.m. and p.m.

Each time a minute change is reached, clock new data into the serial LED display.
Start with clocking a high data (START) bit, followed by 34 bits of data represent-
ing the four seven-segment displays, the four decimal points between the seg-
ments, and the two external LED option bits. Table 1 indicates the bit orders.

AN003401-Z8X0500

Application Note
Timekeeping with Z8 Microcontrollers

&
o(’?n
A)

Table 1. LED Option Bits

Bit # Digit # Segment Bit # Digit # Segment

1 1 A 18 3 B

2 1 B 19 3 Cc

3 1 Cc 20 3 D

4 1 D 21 3 E

5 1 E 22 3 F

6 1 F 23 3 G

7 1 G 24 3 DP
8 1 DP 25 4 A

9 2 A 26 4 B
10 2 B 27 4 C
11 2 Cc 28 4 D
12 2 D 29 4 E
13 2 E 30 4 F
14 2 F 31 4 G
15 2 G 32 4 DP
16 2 DP 33 — PIN 1
17 3 A 34 — PIN 2

Finally, clock out one low data (STOP) bit so the display synchronously generates
the load signal, followed by the reset signal, to ready the device for the next 36
bits. Figures 1 and 2 illustrate the timing relationships of the Three Five Systems
device. Figure 3 contains a block diagram of the device.

The next part of this discussion focuses on implementing a real time clock based
on the internal frequency of the microcontroller. In this example, an 8-MHz crystal
drives the Z8 microcontroller. The internal time base fed into the two counter tim-
ers is 1 MHz. To derive this time, divide the Z8'’s internal frequency by 2. The 4-
MHz frequency is further divided internally by 4 before being fed into the counter
timers. Use the counter timer registers, in combination with the prescaler regis-
ters, to further divide the timebase down to the interrupt timing required. In this
case, timer0Q interrupts every 5 ms, while timer1 interrupts every 1 ms.

* TimerO (IRQ4) interrupts every 5 ms and tracks the time. The timer updates
the time registers with additional subroutines that check the input switches for
time change data and convert the raw binary data into binary coded decimal
format for the display. The 16-bit interrupt vector for this routine is loaded into
ROM at locations 0x08 and 0x09 .

AN003401-Z8X0500

Application Note
Timekeeping with Z8 Microcontrollers

&
O(’dQ
A

* Timer1 (IRQ5) interrupts every 1 ms and returns data to the LED segments,
one segment per interrupt. The 16-bit interrupt vector for this routine is loaded
into ROM at locations 0xOA and 0x0B. The software provides this interrupt
priority, so the muxed frequency display update is not delayed. Each seven-
segment display is updated approximately every 4 ms.

The program counts in five-millisecond increments and, when a count of (5ms x
100) or 5/10 of a second is reached, updates the half-second count. From that
data, update the seconds, minutes, and hours, as appropriate. Toggle the output
to the colon every half-second. At the same time, interrupt the controller every one
millisecond to refresh the output to the seven-segment LEDs, one display at a
time.

The common anodes of the seven-segment LEDs are driven one segment per
interrupt from Port 0, accomplished using the display_pointer ,orrd. The
display_pointer is rotated right after every update to align the data on Port 0
with the next segment to be turned on. The segment data lines are connected in
series and driven from Port 2. To perform this process, use the pointer to get the
raw number from memory, and use the raw number to increment the address in
the LED data look-up table. Load the LED data to Port 2 using led_data , or r3.
The colon bits are connected in parallel and driven from Port 2, bit 7. The switch
inputs are monitored on Port 3.

The INIT subroutine is implemented one time (or initially) to initialize the device.
The TIME_CONVERT subroutine is implemented to separate the 8-bit registers
with eight bits of data into two 8-bit registers with four bits of data by ANDing away
the unwanted four bits.

Summary

Both of these applications keep time effectively and are relatively simple to imple-
ment. They are also cost effective and can be adapted to several other microcon-
trollers with more 1/Os and features. The applications can be adapted to any
system that requires a low-cost way of tracking time.

Technical Support

Source Code

60Hz_Clock.asm Source File
*kkkkkkkkkkkkkhkkkkkkhkkhkkkhhkkkhkkhhkkhkkhhkkhhkkhhkhhkkhhkhkhhkkhhkkhikkhkkikx

* This program demonstrates howtoimplementasimple
* Real Time Clock using a Z86E08 or another Z8 with at

AN003401-Z8X0500

Application Note
Timekeeping with Z8 Microcontrollers

&
O(’dQ
A

* |least five 1/0Os. This code is from the Z8 App

*notes manual and was modified by Mark Thissen on 08/10/99.
*ThiscodehasbeenmodifiedtobecompatiblewithZDSvs.2.12.

* The "60Hz_Clock.inc" must be assembled with this assembly file
* in orderto run.

kkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkhkkhkhkkkkkhkhkhkkkkkhkhkkkkkkkhkkkkkkkk

* |nclude section

kkkkkkkkkkkkkhkkkkkkhkkkkkkkkkhkkkkkkkhkhkkkkkkhkhkkkkkkhkkkkkkkhkkkkkkkk

include "60Hz_Clock.inc"

B Rk kT R T T T ST S

* Interrupt Vectors

kkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkhkkkkkkkkhkhkkkkkhkhkkkkkkkhkkkkkkkk

vector reset = start ;Start Vector 0Ch

vector IRQO =time :16-bit address of IRQO,
:labeled time

vector IRQ1 =1RQ1 ;Dummy Vectors

vector IRQ2 =1RQ2 ;"

vector IRQ3 =IRQ3 o

vector IRQ4 =IRQ4 "

vector IRQ5 =1RQ5 ;"

GLOBALS ON

60HZ Clock Program Main

kkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkhkhkkkkkhkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkk

* 60Hz Clock Program Main
kkkkkkkkkkkkkkkkhkkkkkkkkhkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkx
start:
di ;Disable Interrupts
Id spl,#%80 ;Set Stack pointer to start @ 7Fh.
clr sph ;Clear high byte of stack pointer
call INIT :Call init routine
main_loop: ei ;Enable interrupts

jr main_loop ;Continuous loop

kkkkkkkkkkkhkhkkkkkhkhkkkkkkhkkhkkkkkkkkhkkkkkhkhkhkkkkkkhkhkkkkkkhkhkkkkkkk

* Function Name: INIT

* Returns: Initialized control registers and

* cleared memory registers

* Entry Values (arguments): Include File data

* Description: This module simply initializes the

* device to have Port 0 as an output

* port and Port 3 as an input port.

* It also initializes several data mem-o
* ory locations, initializes interrupt

* IRQO as a digital falling edge from
* P32, initializes the time display to
* 12:00 and initializes the segment
*

of day to Post Meridiem (p.m.).

AN003401-Z8X0500

Application Note
Timekeeping with Z8 Microcontrollers

&
O(’dQ
A

*

* Notes
kkk
INIT:
srp #DELAY_REG ;Set Register Pointer to 30h
clr slow_delay ;Initialize slow_delay register
srp #TIME_REG ;Set Register Pointer to 10h
Id p3m,#0 ;Set Port 3 inputs in digital
:mode
Id p01m,#04 ;Set Port 0 as output / internal
;Stack
clr pO ;Clear Port 0 outputs
clr p3 ;Clear p3
clr 1irq ;Ensure no pending interrupts
Id imr,#%01 ;Enable IRQO
Id pointer, #CLEAR_MEM;start at ram location 18h
Id counter,#6 :load counter with six
clear_reg: clr @pointer ;Clears six consecutive memory
;locations
inc pointer ;inc pointer location

djnz counter,clear_reg ;decrement counter and clear
;ram location until 0

Id hours,#%12 :Start at 12:00

d AM_PM,#%FF :Start with PM (FF=PM,00=AM)
Id pointer,#hour_ptr;Start with hours register

call time_convert :Call time conversion subroutine

call load_time ;Call time loading subroutine

ret :Return from subroutine to main

kkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkhkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkx

IRQO Interrupt Service Routine (time)

*

* This interrupt service routine checks the time set switch,
* regulates the speed at which the time is advance,
* and updates the time registers.
*
*kkkkkkkkkkhkkkkkkkkkhkkkhkhkkkhhkkkkkkhkkkkkhkkkkhkkkkhhkkkhkkkkkhkkkkkkkhkkkkkkhkkkx
time: tm p3,#2 ;Test time change switch
jr nz,inc_millisec ;Switch pushed if zero
srp #DELAY_REG ;Set Register Pointer to 30h
cp slow_delay,#35 ;36 seconds?
ir ugt,fast_run ;yes, start faster time advance
Id r15,#%0 q ;Initrl5to O
ip next_run ;go to next slow time advance
fast run: Id r15,#%EF ;start r15 with EFh for fast
;advance
next_run; Id r14 ,#%FF :Init r14 to FFh
slow_count:djnz rl4,slow_count ;Decrement rl4 until zero
inc rl5 ;Increment r15
cp r15,#%FF ;Is rl5 FFh yet?
ir nz,next_run ;r15!1=FFh : Continue looping
cp slow_delay,#35 ;36 seconds yet?
jr ugt,no_inc ;if greater than 35 do not

AN003401-Z8X0500

Application Note
Timekeeping with Z8 Microcontrollers

&
O(’dQ
A

:increment
inc slow_delay ;inc counter
no_inc: srp #TIME_REG ;set register pointer back to 10h
clr millisec ;Clear millisec register
clr seconds ;Clear seconds register
jr inc_minutes ;Increment the minutes register
:and continue
inc_millisec:srp #DELAY_REG ;Set Register Pointer to 30h
clr slow_delay ;clear slow_delay counter
srp #TIME_REG ;set register pointer back to 10h
inc millisec ;Add one to millisec count
cp millisec,#60 :One Second?
ir ult,no_time_load;If less than, jump out
clr millisec ;Else clear count
inc seconds ;Increment seconds register
cp seconds,#60 ;60 Seconds?
jrult,no_time_load;If less exit
clrseconds :Else clear count
inc_minutes:add minutes,#1 ;Add one to minutes count
daminutes :Convert to BCD
cpminutes,#%60 :60 Minutes?
jrult,exit_time ;If less exit
clrminutes :Else clear minutes count
add hours,#1 ;Add one to hours count
dahours ;convert to BCD
cphours,#%12 ;Compare to 12
jrne,next_cp ;Donotcomplementiflessthan
comAM_PM ;Complement AM_PM register
next_cp: cphours,#%13 ;1:00?
ir ult,exit_time :If not exit
Id hours,#1 ;Else make hours 1
exit_time: call time_convert ;Call conversion routine
call load_time ;Call load time subroutine
no_time_load:iret ;Return from interrupt
kkkkkhkkkkhkkkhkhhkhhkhhkhhhhhhhhhhhhhkhhhhhhhhhhhhhkhhhhhhhhhhrhhhhrx
* Function Name: load_time
* returns Properly loaded display
* entry values (arguments) Raw time digits, data look up table
* Description: This subroutine fetches the raw LED
* numbers and uses a lookup
* table to convert the raw numbers into
* valid LED data, and stores that
* data in memory. It then formats
* the data routine to clock out the
* data and calls the clock_out routine
* to serially clock the data out.
* Notes
*kkkkkkkkkkkkkkkhkkkkkkkkkhkkkkkkhkkkkkkkkhkkkkkkhkkkkkkkkhkkkkkkkkkkkkkkkk
load_time:
Id pointer,#hour_ptr;Point to high hours register
Id BUFFER,#04 ;Load Buffer with 4
Id counter,#4 ;Load Counter with 4

AN003401-Z8X0500

Application Note
Timekeeping with Z8 Microcontrollers

&
O(’dQ
A

Id address_hi,#HIGH led_table ;Get end address of

;LED table
load_table:ld address_lo,#LOW led_table ;Get start address

Id dat,@pointer ;Load the high order hours number

add address lo,dat ;Add to offset the table address

[dc dat,@address ;Load the segments data

Id @BUFFER,dat :Place the data at the location
;pointed to by buffer

dec pointer ;Decrement the pointer

inc BUFFER ;Increment the buffer

djnz counter,load_table;Continue until all 4 segment’s
:data has been loaded

Id BUFFER,#4 ;Load buffer with 4
Id pO,#START ;Make Data High
call clock out :Send one Start Bit
Id counter,#4 ;Load counter with 4
cp hours_hi,#0 :Is hours hi 0?
jr nz,next_digit ;If 1= 0 then go clock out 4
;digits
Id bit_count,#8 ;Else gllocliout the first segment
;blan
and p0,#ZERO ;Make data low
zero_clock:call clock out ;Clock out data
djnz bit_count,zero_clock;Loop 8 times
dec counter ;Decrement the counter
inc BUFFER ;Point to the next digit's data
next_digit:ld bit_count,#8 ;Load the bit counter with 8
Id dat, @BUFFER ‘Load the data from the buffer
rotate: rcf ;Clear the carry flag
rrc dat ;Rotate bits right into the carry
;location
jr nc,zero ;If no carry then clock out a
;Zero
or p0,#ONE ;Else prepare to clock out a one
jr clock_it ;Jump to clock it
zero: and p0,#ZERO ;Make data low
clock_it: call clock out ;Go clock out bit
djnz bit_count,rotate ;Loop until 8 bits clocked out
inc BUFFER ;Point to next digit
djnz counter,next_digit;Loop until all 4 digits
;clocked out
Id counter,#3 ;Load counter with three
cp AM_PM #%FF ;PM?
jr z,high_dat If yeshprr:]apare to clock out a
;hig
and p0,#ZERO :Else clock out zero
jr stopbits ;Jump to start clocking
high_dat: or p0,#ONE ;Make data high
stopbits: call clock_out :Clock out last two data and one
;stop bit
and pO0,#ZERO :Make data low
djnz counter,stopbits ;Loop until all 3 bits clocked

;out
Id pO,#ENABLE_HI ;Disable display

AN003401-Z8X0500

ret

Application Note
Timekeeping with Z8 Microcontrollers

&
O(’dQ
A

:Return to caller

kkkkkkkkkkkkkhkkkkkkhkkhkkkkkkkkhkhkkkkkkhkhkkkkkkhkhkkkkkkhkkkkkkkhkkkkkkkk

Function Name:

returns unpacked
entry values (arguments) Packed
Description: This su

*
*
*
*
*
*
*
*
*

*

* Notes

4

time_convert

BCDdata
BCDdata
broutine converts the seconds,
minutes, and hours bcd

data into units and tens of units for

displaying by placing the

data into a separate register and then

and-ing out the appropriate
bits.

kkkkkkkkkkkhkkhkkkkkkhkkkkkkhkkkkkkkkkhkkkkhkkkkkkkhkkhkkkkkkhkhkkkkkkk

time_convert:ld minutes_lo,minutes ;Separate

;digits for display

Id minutes_hi,minutes ; "
and minutes_lo,#%0f ;Get rid of upper 4 bits
swap minutes_hi ;Swap nibbles
and minutes_hi,#%0f ;Get rid of upper 4 bits
Id hours_lo,hours ;Separate digits for display
Id hours_hi,hours ;" oo
and hours_lo,#%0f ;Get rid of upper 4 bits
swap hours_hi ;Swap nibbles
and hours_hi,#%0f ;Get rid of upper 4 bits
ret :Return
kkkkkkkkkkkkkhkkhkkx
* Function Name: clock_out
* returns Clocked out data bit
* entry values (arguments) Port zero data and enable set
* Description: This subroutine simply toggles the
* clock pin high and then low again
* after a short delay.
* Notes

kkkkkkkkkkkkkhkkkhkkhkkkkkkhkkkkkkhkkkkkkkkhkkkkkkhkkkkkkkkhkkkkkhkkkhkkkkkhkkx

clock_out: or p0,#CLOCK_HI ;Send high clock
nop ‘Wait
nop "
nop P
and pO0,#CLOCK_LO ;Send low clock
nop ;Wait
nop P
nop "
ret ;Return

kkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

* Unused IRQ Vectors placed to give the controller a place

* to vector and return in case of a stray interrupt.
*kkkkhkkkkhkkkhkhkkhkkhhkkhkhhhkhkhhkhhhhkhhhhhhhkhhhhhkhhhhhhhhhhkhhhirx
IRQ1: ;Dummy interrupt routines
IRQZ: 11} n n

’

AN003401-Z8X0500

IRQ3:
IRQ4:
IRQ5:

iret

kkkkkkkkkkkkkhkkkkkkkhkkkkkkkkk

* LED Segment Tables

kkkkkkhkkkkkkkhkkkkkkkhkkkkkkkkk

led table: .byte %3F

.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte

%06
%5B
%4F
%66
%6D
%7D
%07
%7F
%67

Application Note
Timekeeping with Z8 Microcontrollers

&
O(’dQ
A

Return from interrupt

: Data for number "0"

: Data for number "1"
: Data for number "2"
: Data for number "3"
: Data for number "4"
: Data for number "5"
: Data for number "6"
: Data for number "7"
: Data for number "8"
: Data for number "9"

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkhkkhkhkkkkkhkhkkkkkhkhkkkkkkkkkkkkkkk

end start

;End of assembly

AN003401-Z8X0500

9

Application Note
Timekeeping with Z8 Microcontrollers

&
O(’dQ
A

60Hz_Clock.inc Include Source File

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkhkkhkkkkkhkhkhkkkkkkkhkhkkkkkkkkkkk

* 60Hz Clock Include File
*

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkhkkhkkkkkkkhkhkkkkkkkkkkkk

hour_ptr .equ %1F

START .equ 02 :

ENABLE_HI .equ 01 ;}General purpose registers and ram
;locations

ONE .equ 02 ;

ZERO .equ %FD ;

CLOCK_HI .equ 04 ;

CLOCK_LO .equ %FB ;

CLEAR_MEM .equ %18

TIME_REG .equ %10 ;Working Register group 1

DELAY_REG .equ %30 ;Working Register group 3

slow_delay .equ r4

AM_PM .equ %31

millisec .equ 8

seconds .equ 9

minutes .equ rio ;

hours .equ ril1

counter .equ n ;

bit_count .equ rl ;General purpose registers and ram
:locations

address_hi .equr4d ;
address lo .equ 5
address .equ rr4
minutes_lo .equ rl12 ;
minutes_hi .equ rl13 ;

hours_lo .equ ri4 ;
hours_hi .equ ri15 ;
pointer .equ r6

dat .equ 7
BUFFER .equ r2

AN003401-Z8X0500

10

Application Note

Timekeeping with Z8 Microcontrollers

8MHz.asm Source File

kkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkhkkkkkhkkkkkkkkkhkkkkkkkkkkkkkkk

* Simple Real Time Clock
*

* This program demonstrates how to implement a simple
* Real Time clock using a Z86E40 or another Z8 with at

* least 14 1/O's. This code was taken from the Z8 Application
* notes manual and modified by Mark Thissen on 08/08/99.

* This code is compliant with ZDS v.2.12. The include file

*"8MHz_Clock.inc"mustbe assembledwiththis source code

*

Counter Timer O is set up to count down to zero every
5ms with an 8 MHz XTAL. The formula is:

i=txpxv

i = desired time interval until end of T/C count

t = input clock period (8 divided by the XTAL frequency)

p = prescaler value (1-64 decimal 01-00 Hex)
v = T/C value (1-256 decimal 01h,02h,...00h)

Therefore, 5ms = 1us x 20 x 250

** This interval can be lengthened somewhat to let the

*

*

*

*

*

*

*

*

*

*

*

*

*

* clock run a little slower or shortened to have the
* opposite effect but should keep time within +/- the
* crystal tolerance.
*

*

*

*

*

*

*

*

*

*

*

*

*

*

Counter Timer 1 is set up to count down to zero every
roughly 1ms with an 8 MHz XTAL. The formula is:

i=txXpxvVv

i = desired time interval until end of T/C count

t = input clock period (8 divided by the XTAL frequency)

p = prescaler value (1-64 decimal 01-00 HEX)
v = T/C value (1-256 decimal 01h,02h,...00h)

Therefore, 1ms = 1us x 4 x 256

kkkkkkkkkkkkkhkkkhkkkkkkkkhkkkkkkhkkkkkkkkhkkkkkkhkkkkkkkkhkkkkkhkkkhkkkkkkkx

kkkkkkkkkkkkkhkkkkkkhkkkkkkkkkkkkkkhkhkhkkkkkhkhkhkkkkkhkhkkkkkkkhkkkkkkkk

* Include section

kkkkkkkkkkkkkhkkhkkkkkkkhkkkkkkkkhkhkkkkkkhkhkkkkkkhkhkkkkkkhkhkkkkkkhkkkkkkkk

include "8MHz_Clock.inc"

kkkkkkkkkkkkkkkkhkkkkkkkkhkkkkkkhkkkkkkkkhkkkkkhkkkkkkkkhkkkhkkkkkkkkkkkkkx

* Interrupt Vectors

kkkkkkkkkkkkkhkkkkkkhkkkkkkhkkkkkkhkkkhkkhkkkkkkkhkhkkkkkhkhkkkkkkkkkkkkkkk

&
O(’dQ
A

AN003401-Z8X0500

11

Application Note
Timekeeping with Z8 Microcontrollers

&
O(’dQ
A

vector reset = Start :Start Vector OCh

vector IRQO = IRQO ;Empty Vector Locations
vector IRQ1 = IRQ1 o

vector IRQ2 = IRQ2 o

vector IRQ3 = IRQ3 "

vector IRQ4 =time ;16 bit Address of IRQ4, labeled

;time
vector IRQ5 =load_time ;16 bit Address of IRQ5, labeled
;load_time

kkkkkkkkkkkkkkkhkkkkhkkkkkkkkkhkhkkkkkkhkhkkkkkkhkhkkkkkkhkkkkkkkhkkkkkkkk

* MAIN: Timekeepingbasedonthe8-MHzcrystal

kkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkhkkkkkkkkkkhkhkkkkkkkkkkkkkkkkkkkkkkx

GLOBALS ON
Start:
di ;Disable interrupts
Id spl,#%80 ;Set Stack pointer to start
@ 7Fh.
clr sph ;Clear high byte of stack pointer
callINIT :Initialize device
main_loop: ei ;Enable interrupts
jr main_loop ;Continuous loop
*kkkkhkkkkhkkkhkhkhkhhkhhkhhhhhhhkhhhhhkhhhhhhhhhhhhhhhhhhhhhhhrhhhhrx
* Function Name: System initialization
* returns Various Initialized registers
* entry values (arguments) NA
* Description: Initializes the system
* Notes
*kkkkkkkkkkhkkkkkkkkkhkkkkhkhkkkhkkkkhkkkkhkkkkkhkkkkhkkkhhkkkhkkhkkkhkkkkkkkhkkkkkkhkkkx
INIT: srp #WORKING_REG ;Set Register Pointer to 10h
Id t0,#250 :Load TO Count with 250 Decimal

Id pre0,#01010001b ;Set for 5mS period and
| | ;Modulo Counting

Sl
| ||__ Set for Modulo Count
] |l__ Reserved, Must be 0

o

i | 14h or 20d for prescaler value.

Id t1,#0 :Load T1 Count with 256 Decimal

Id prel,#00010011b ;Set for roughly 1mS period and
;Modulo Counting

| ||_Set for Modulo Count
ol Internal Clock Source

AN003401-Z8X0500

12

Application Note
Timekeeping with Z8 Microcontrollers

&
O(’dQ
A

Do 4 for prescaler value.

Id p2m,#0 ;Set Port 2 as 8 bit output port.

Id p3m,#1 :Set Port 2 Push-Pull.

Id p01lm,#04 ;Set Port 0 as output / internal
;Stack

clr po ;Clear Port 0 outputs

clr p3 ;Clear p3 outputs

clr p2 ;Clear Port 2 outputs

clr switch_count :Clear GPR

clr STATUS ;Clear GPR

clr HALF_SECOND ;Clear GPR

Id ipr,#%08 ;/IRQ5 has priority over all IRQ's

Id imr,#%30 ;Enable IRQ4 and IRQ5

Id tmr, #%cf ;init timer mode register

Id pointer,#04 :start at ram location 04

Id r15,#12 ;Clear 12 bytes of Ram from-

clear_reg: clr @pointer ;-04h to Ofh.

inc pointer ;inc pointer location

djnz rl5,clear_reg ;decrement counter and clear ram
:location until O

Id HOURS, #%12 ;Start at 12:00

Id pointer #HOURS _HI;Start with hours register
Id display_pointer,#%88 ;Enable first segment

ret ;Return to main
kkkkkkkkkkkhkhkkkkkkkhkhkhkhkkkkkkhhkhhkhkhkkkkhkkkkhkhkhkkkkkkhkhkhkhkhkhkkkkkkkk
* Function Name: Time Convert _
* returns Data in tens and ones registers for
* displaying.
* entry values (arguments) Minutes ‘and Hours BCD
* Description: This subroutine converts the minutes and
* hours (packed) bcd data into units and
* tens of units (unpacked bcd) for
* displaying.
* Notes
kkkkkkkkkkkhkhkhkkkkkhkkkhkkkkkkhhhkhkhkkkkkkhhkhkhkhkhkkkkhhkkhkhkhkkkkkhkkkk
time_convert:ld MINUTES LO,MINUTES ;Load minutes to separate

;8-bit registers
[d MINUTES_HI,MINUTES ;

and MINUTES_LO,#%0f ;Dispose of upper 4bits
swap MINUTES_HI ;Swap nibbles

and MINUTES_HI,#%0f ;Dispose of upper 4bits

Id HOURS LO,HOURS ;Same procedure for hours

l[d HOURS_HI,HOURS ;
and HOURS_LO,#%0f ;
swap HOURS_HI ;
and HOURS_HI,#%0f ;
ret ;return

kkkkkkhkkkkkkkhkkkkkkkhkkhkkkkkkkhkhkkkkkkkhkkkkkkhkhkkkkkkhkhkkkkkkhkkkkkkkk

AN003401-Z8X0500

13

Application Note
Timekeeping with Z8 Microcontrollers

&
O(’dQ
A

* Function Name: Test Switch
* returns Status, switch_count(Debounceregister)
* entry values (arguments) P3 Data, switch_count
* Description: Thissubroutine checkstoseeifthetime
* set switches are pressed
* Notes
*kkkkkkkkhkkkhkhkkhkhkhkhkhhkhhkhhkhhhhkhhkhhhhhhhkhhkhhhhhhhhhhkhhhhrx
test_switch: push rp ;Save register pointer on
:the stack
srp #WORKING_REG ;set register pointer to 10h
Id led_data,p3 ;read switch data
com led _data Invert data
and led_data,#%03 ;get rid of unused bits
cp led data,#0 ;any switch pushed?
jr eq,clear_sw ;no? clear switch_count and
;status and return
tm led_data,#%1 ;else, minutes switch pressed?
jr ztest_hrs ;no, jump and test next switch
inc switch_count ;increment counter
cp switch_count,#%2 ;This is the debounce must be
;pressed for two passes
jr ultexit_sw ;if less than two jump out
or STATUS,#%1 :else, set status bit and return
jr exit_sw ;jump out
test_hrs: tm led_data,#%?2 ;hours switch pressed?
ir Z,clear_sw ;no, clear switch_count and
status and return
inc switch_count ;else inc switch_count
cp switch_count,#%2 ;This is the debounce must be
;pressed for two passes
jr ult,exit_sw ;if less than two jump out
or STATUS,#%2 :else, set status bit and return
exit_sw:poprp ;reinstate register pointer
:from stack
ret ;return
clear_sw clIr STATUS ;Clear status
clr switch_count ;clear switch_count
pop rp ;reinstate register pointer from
;stack
ret ;return

kkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkhkhkkkkkkkhkhkkkkkhkhkhkkkkkkhkkkkkkkk

* Dummy IRQ Vectors placed to give the controller a place

* to vector and return in case of a stray interrupt.
*kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkhkkkkkkkkhkkkkkkkkkkkkkkkk

IRQO: ;Dummy vectors
IRQ1: ;o
IRQ2: ;o
IRQ3: ;o
iret ;Return from interrupt

kkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkhkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

AN003401-Z8X0500

14

Application Note
Timekeeping with Z8 Microcontrollers

&
O(’dQ
A

* This interrupt routine updates the time and tests the switches

kkkkkkhkkkkkkkhkkhkkkkkkkhkkkkkkkhkhkkkkkkhkhkkkkkkhkhkkkkkkhkhkkkkkkhkkkkkkkk

time: push rp ;Save Register Pointer
srp #TIME_REG :Set RP to 00
call test switch ;Test inputs
inc millisec :add one millisec

cp millisec,#100 ;Half Second?
jr ult,no_convert ;If less than, jump out

tm STATUS, #%01 ;Switch 1 pressed?

jr z,test_sw2 ;If not check sw2

add MINUTES,#%1 ;add one minute

da MINUTES :Convert to BCD

cp MINUTES,#%60 ;Are we at 60 minutes?

jr ult,clear_count ;Jump out if less than

clr MINUTES :else clear minutes
clear_count:clr millisec ;clear millisec counter

clr HALF_SECOND :clear half second counter

clr seconds :clear seconds counter

jr exit_time ;jump out
test_sw2: tm STATUS, #%02 ;switch 2 pressed?

ir z,inc_half_sec ;if not jump out

add HOURS #%1 :else add hours+1

da HOURS :convert to BCD

cp HOURS,#%13 :1:00?

jr ult,inc_half_sec ;jump out if not

Id HOURS,#%1 ;change hoursto 1
inc_half_sec:inc HALF_SECOND ;inc half sec count

xor p2,#%80 ;toggle colon

clr millisec :clear millisec counter
one_second:cp HALF_SECOND,#%2 ;is this one second?

ip ult,exit_time ;if not exit

clr HALF_SECOND :else clear counter
inc_seconds:add seconds,#%1 ;inc sec count

cp seconds,#60 :60 Seconds?

jr ult,exit_time ;if less exit

clr seconds ;else clear counter

add minutes,#%1 :inc minutes count

da minutes ;convert to BCD

cp minutes,#%60 ;60 Minutes?

ir ult,exit_time ;if less exit

clr minutes ;else clear minutes counter

add hours,#%1 :inc hours count

da hours :convert to BCD

cp hours,#%13 :1:00?

jr ult,exit_time ;if not exit

Id hours,#%1 :else make hours 1
exit_time: call time_convert ;call conversion routine
no_convert.pop rp ;reinstate register pointer

iret ; Return from interrupt

kkkkkkhkkkkkkkhkkkkkkhkkkkkkhkkkkkkkkhkhkhkkkkhkhkhkkkkhkhkhkkkkkkkkkkkkkk

* This interrupt routine Outputs the time data to the LED bank

kkkkkkkkkkkkkhkkkhkkkkkkkkhkkkkkkhkkkkkkkkhkkkkkhkkkkkkkkhkkkhkkkkkkkkkkhkkx

AN003401-Z8X0500

15

Application Note
Timekeeping with Z8 Microcontrollers

&
O(’dQ
A

load_time: push rp ;Save register pointer

srp #WORKING_REG ;set new pointer to 10h
load_table:ld rl2,@pointer ;Load time register

address_hi,#HIGH led_table ;get start address of
:LED table

Id address_lo,#LOW led_table ;get end address

cp ri2,#0 ;start at beginning of table? 0?

jr eq,no_index ;yes to previous question
index_num: incw address ;else inc address

djnz rl2,index_num ;inc address until equal to

r12 contents
no_index: Ide led_data,@address ;load led segment value to

;display
tm p2,#%80 :check status of colon
jr z,colon_off ;if off, jump
and p2,#%80 ;else clear p2 bits dO-d6
jr continue ;jump
colon_off: and p2,#%00 ;Clear all p2 bits
continue: orp2,led_data ;output segment data
Id pO,display_pointer ;turn on display
dec pointer ;dec pointer

cp pointer, #SECONDS_HI ;compare pointer with Oah
ir ugt,load_time_ret;get out on greater values
Id pointer #HOURS _Hl;else start with beginning digit

cp @pointer,#0 ;is the beginning digit a 0?
jr ne,load_time_ret ;if not get out
dec pointer ;dec the pointer

rre display_pointer ;rotate to point to first digit
load_time_ret:rr display_pointer ;rotate display pointer to turn
;on next segment
pop rp ;reinstate reg pointer
iret ;return from interrupt

kkkkkkkkkkkkkkkkkkkkkkkkhkkkkk

* LED Segment Tables

kkkkkkkkkkkkkkkkkkkkkkkkkkkkk

led_table:.byte %01 ; number "0"
.byte %79 ; number "1"
byte %12 : number "2"
.byte %06 ; number "3"
.byte %4c : number "4"
byte %24 ; number "5"
-byte %20 ; number "6"
.byte %0f ; number "7"

.byte %00 ; number "8"
-byte 960c ; number "9"
.byte %7f : Off

AN003401-Z8X0500

16

Application Note
Timekeeping with Z8 Microcontrollers

&
O(’dQ
A

end Start ;End of assembly

8MHz_Clock.inc Include Source File
kkkkkkkkkkkkkkkkhkkkkkkkkhkkkkkkhkkkkkkkkhkkkkkkkkkkkkkkhkkkhkkkkkkkkkkkkkx

* 8MHz. Clock include file

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkhkhkkkkkkkkhkkkkkkk

WORKING_REG .equ %10 ;Working Register group 1

address_hi .equ r0 ;

address_lo .equ rl ;

address .equ rr0 ;

pointer .equ r2 ;General purpose registers and
;ram locations

led_data .equ r3 ;

display_pointer .equ r4 ;
HALF_SECOND .equ %16

TIME_REG .equ %00 ;Working Register group 0
millisec .equ r5 :
seconds .equ 6 ;
minutes .equ r7 :
hours .equ r8 :
seconds_lo .equ r9 ;
seconds_hi .equ ri10 ;
minutes_lo .equ rl1 ;
minutes_hi .equ ri2 ;
hours_lo .equ r13 ;
hours_hi .equ ri4

switch_count .equ rl5 ;General purpose registers and
:ram locations

STATUS .equ %04 ;
MILLISEC .equ %05 ;
SECONDS .equ %06 ;
MINUTES .equ %07 :
HOURS .equ %08 ;

SECONDS_LO .equ %09 ;
SECONDS_HI .equ %0a ;
MINUTES _LO .equ %0b
MINUTES_HI .equ %0c ;
HOURS_LO .equ %0d ;
HOURS_HI .equ %0e ;

AN003401-Z8X0500

17

Application Note

Timekeeping with Z8 Microcontrollers

Timing Diagrams and Tables

Figures 1 and 2 illustrate two TSM6234B timing relationships.

Figure 1. TSM6234BTiming

Clock Pom

Nl

Data P01
—> < 0%
| Data
Enable]
P00 100 nS
) ; MIN

Figure 2. TSM 6234B Timing

TSM6234B Timing

36

Clock

Start bit

34 Data

bit 36

Data

Load
(Internal)

Reset
(Internal)

The 34 data bits include 8 segments x 8 bits plus two bits for external LEDs
(x or don't care). The Start bit must be accompanied by a high data bit, and the
stop bit must be accompanied by a low data bit.

AN003401-Z8X0500

Application Note
Timekeeping with Z8 Microcontrollers

o4
¥ /7)19

Technical Drawings

Figure 3. TSM6234B Block Diagram

VLed
9
1 A 2 3 4
F
VDD B
6 E
Brightness onll ' ' . 1 ||
DP
Control
Resistor T LED DISPLAY T
2 //l‘
- - External LEDs
35 Output Buffers
G p
01uF EE

IData Enable 35 Latches

3

Serial Data

-|I b
o)

AN003401-Z8X0500

Figure 4. 60-Hz Interrupt Service Routine

Test Time
Set Switch

Switch
Pressed?

Yes
r

Start Delay

Routine to

inc minutes
slowly

Clear
millisec

I

Increment
Hours,

change to e
BCD

ISR Start

Increment
millisec and
compare to

60

One
Second?

Application Note
Timekeeping with Z8 Microcontrollers

&
O(’dQ
A

No

rYes

Clear
millisec,
Increment
seconds and
compare to
60

IYes

Yes
Compare to
12

* -

Return To Main

Clear
seconds Load Hours
register, Complement Register
Increment _» AM_PM with 1
Minutes, Register
change to f
BCD, and
compare to Yes
60h
Compare to
13 One
O'clock?
A
Call Time
No _> Convert and <_No
Yes Load Time
|

*

AN003401-Z8X0500

20

Figure 5. 60-Hz Interrupt Main Routine

Main:
Call device
init, loop
and wait for
interrupt

—
4—

Device Init:
Initialize
control
registers

and init time

at 12:00PM

Application Note
Timekeeping with Z8 Microcontrollers

&
064’
A

Interrupt
Service
Routine

A

; v

Subroutine: Subroutine:
Load_Time Time_Convert
A A

AN003401-Z8X0500

21

load_Time
Start

Load digits
to be
displayed
one at a time

v

Load 16 bit
address of
LED table in
two defined
bytes.
address_hi/
address_lo

v

Create offset
to low
address byte
by adding
segment
value to it.

v

Load LED
data and
place in

memory @
Buffer

v

Make Port0
(P01) data
high and
clock out

one start bit

Is the high
order hour
0?

Yes

Application Note
Timekeeping with Z8 Microcontrollers

&
0(’&‘Q
A

Figure 6. 60-Hz Interrupt Load_Time Subroutine

Clock out 4 Return To Caller)
digits Set data low
and call
clock_ out to
clock out
last data bit
and stop bit
Set Data
High for
By rotating the clocking data PNII‘(;:I:gror
into the carry flag and testing AM(00h) and
the flag, we determine if the call clock
S —— data bitis a 0 or 1. We can . out to clock
then make the decision to load .
the correct data before calling out bit# 33
the clock_out routine.
A L
Test the
AM_PM
register
Clock out against FFh
first digit as
all 0's, then
clock out
next 3 digits

AN003401-Z8X0500

22

Application Note
Timekeeping with Z8 Microcontrollers

o4
o 23

Figure 7. 60-Hz Interrupt INIT, Time_Convert, and Clock_Out Subroutines

INIT time_convert clock_out
Start Start

Set port
mode
registers
Clear IRQs Load
and enable minutes and
IRQO. hours into hi
and low 8 bit
registers v
Strobe Clock
signal high
and perform
3 NOPs
Clear ports,
registers,
and used
ram AND lo registers
locations. with OFh to mask
upper 4 bits.
Swap nibbles of
hi registers and
AND with OFh to
mask upper 4
bits.
\ 4
Load hours
with 12h and Strobe Clock
pointer with signal low
hours ram and perform
location 3 NOPs
(hours_ptr).

Return To Caller

AN003401-Z8X0500

Application Note
Timekeeping with Z8 Microcontrollers

&
064’
A

Figure 8. 8-MHz Crystal Main Routine

Start

\ 4

Main: Device Init:
Call device P Initialize
ini control
init and loop '
i registers
and wait for Jister
interrupt < and init time
at 12:00
A
Interrupt
Service
P Routine >
IRQ4 \ 4
Time Interrupt
Service
Routine
IRQ5
Load_Time
Subroutine: Subroutine:
Test_Switch Time_Convert

AN003401-Z8X0500

24

Application Note

Timekeeping with Z8 Microcontrollers

Figure 9. 8-MHz Crystal IRQ4 Service Routine

S
o

o)| 25

v

Clear N
minutes, Clear minutes
+ increment and all sub-
hours, mil_'lute time
|—> convert to reg_ls!ers, and
Jump and Yes EHelo) and_ S ©
call test switch 2 compateiyity e
test_switch Sh |
60 Load hours
v Test the Miutes? YesP with 1
switch
Increment status Yes
millisec and register N
compare
with 100.
_ No
ol | |
v l|
Clear
Hours Seconds, Yes N /1
Half " switch 2 increment + +
Second? pressed? minutes,
convert to
BCD and — call L
Yes compare with No time_convert| [*%
v Yes 60h.
T::’t“;:e Increment A A
i hours count, Clear Half
! convert to s nd
register BCD and CEELh
increment
compare to seconds,
13h. convert to
No BCD and
| compare with Clear all
) sub minute
M""tu';?ﬁ + No registers
switcl j
pressed? Yes ar:s(ijturtri';eto
Increment —
N o half second A
count
Yes One
v A Second?
Increment
minutes
count, convert
to BCD and |
compare to
60h. Test and
60 Minutes? fogalenthe
Loac!tl'l:o“urs > colon bit and
wi clear the

millisec

register

N

AN003401-Z8X0500

Application Note

Timekeeping with Z8 Microcontrollers

Prepared by

Page 1 of 1
Mark Thissen

ZiLOG

Process Approved by

Timekeeping using an 8MHz Crystal

Figure 10" Wz °r“¢§i£ﬁk‘8§ Service Routine

v

$
oéﬁn
Date '{«‘\' / 2 6

9/13/99
Date

9/13/99

3

Load pointer

with hours_hi,

and compare
to zero.

—

Decrement
pointer and
right rotate
display_pointer
twice

Load time |
digit to r12 *
Load LED s°“tP“tt
egmen
NN || CLIEC: data by OR-
"’t‘;';l:” ing it with
n P2
Load high
and low data
look u p
table Yes
SCCISSE Check colon status Turn on ttt'e
T (high or low) SIS
common anode
by loading the
display_pointer
e to p0
Compare
rM2to 0
Dec pointer;
Compare to last
[¢] segment
Turn it on i
by AND-ing
] S— p2 with Yes
#%80
o Last
* h segment?
Increment Turn it off
word by AND-ing
address p2 with o
until offset #%0
=r12 v +
Right rotate
display_pointer

AN003401-Z8X0500

INIT
Start

Set port mode
registers,
Set up timers 1
and 0 and
prescaler
registers,
set IRQ priorities,
and enable IRQs
4 and 5.

Clear ports,
registers,
and used

ram
locations.

Load hours with
12h and pointer
with hours ram
location . Load
display_pointer
with data to
enable common
anodes on port0

Figure 11. 8-MHz Crystal INIT and Time_Convert Subroutines

> Return To Caller

Application Note
Timekeeping with Z8 Microcontrollers

time_convert
Start

Load
minutes and
hours into hi
and low 8 bit

registers

\ 4

&
O(’dQ
A

AND lo registers
with OFh to mask
upper 4 bits.
Swap nibbles of
hi registers and
AND with OFh to
mask upper 4

bits.

AN003401-Z8X0500

27

test_switch
Start

Read and
invert p3 data,
AND out
unused bits (2-
7), compare
with 0.

Any switch
pressed?

No

\ 4

Clear STATUS
and
switch_count
and return

A

Jump and test
hours switch 2.

Test LED data
against #2 to
see if hours

switch pressed

=

Test LED data
against #1 to
see if minutes
switch
pressed.

I

Return To Caller

Application Note

Timekeeping with Z8 Microcontrollers

Figure 12. 8-MHz Crystal Test_Switch Subroutine

&
O(’dQ
A

Increment
switch_count,
compare
switch_count with 2.
(This is a Debounce
routine)

Switch_count=2?

No

'

Jump out until
switch_count =2 for
debounce

OR STATUS register

minutes switch or,
OR STATUS register
with #2 for the hours

switch and Return

with #1 for the

AN003401-Z8X0500

28

Application Note
Timekeeping with Z8 Microcontrollers

&
O(’dQ
A

Test Procedure

Equipment Used

IBM-compatible PC with WIN95 or better
Z86CCPO0O1ZEM (28 CCP Emulation Board)

Z86CCPO0O0ZAC. This accessory kit provides a power supply for the emulator,
28- and 40-pin ZIF programming sockets, all the emulation ribbon cables, and
an RS-232 cable for PC communication; the 40-pin ZIF socket is required to
program the Z86E40 and the 40-pin ribbon cable for emulation

General Test Setup and Execution

1.
2.

Build up the target test board using the schematic provided in the Appendix.

Type in and assemble the source code using ZDS 2.12 or higher. ZDS can
be downloaded free of charge from: http://www.zilog.com/support/sd.html

For the 8-MHz clock, use either the V¢ from the emulator or from the target
board. For the 60-Hz clock, use the V¢ from the target board. Simply
remove the J1 jumper from the emulator board.

Power up the emulator (refer to the emulator User’s Manual) and download
the assembled code.

Power up the target, and plug the emulator into it using the appropriate
emulation ribbon cable. Ensure that either the target or the emulator crystal
is disabled.

Use ZDS to reset and go, and run the application.

When the emulation process is satisfactory, burn a blank OTP, insert it into
the project, and power it up.

Test Results

Test results indicate that the 8-MHz clock runs flawlessly, whether being emulated
or running from an OTP. The 60-Hz clock also runs flawlessly when running from
an OTP. When running under emulation, the 60-Hz clock runs twice as fast. There
are two interrupts that vector to IRQO with the C50 ICE chip. Expect the minutes

to update every 30 seconds under emulation conditions. The clock operates cor-
rectly when an OTP is burned and installed.

AN003401-Z8X0500

29

http://www.zilog.com/support/sd.html

Application Note
Timekeeping with Z8 Microcontrollers

o4
¥/ 4130

Appendix

Schematics

Figure 13. Timekeeping Based on a 60-Hz Power Line Interrupt

R1
10K Ohms

5.6K Ohms

st

01uF

= 06 o7
:osw PUSHBUTTON
= D5
Standard NG4S NG4S
Power Supply ut
7
8 11 [Enable
e il wlE -
10 13 TOK 5 8
110VAC %—1P3 P02 /
BRIDGE 7 15
4 - SOXTALL P20 | !I" !' "
A XTAL2 P21 L
TRANSFORMER 6.3V CT o —
Slvee P Ha LED Assembly T
Dhreos e P24 | —x Thee Five Systems
3 VCC +5VDC P25 = TeM62B
vi Vo o P26 —
o O1uF 3 P —x N D8
+ C2) 3 T AMIPM LED
1500uF Electrolytic P—
N ~ R3 =

100K Ohms
R4
100K Ohms
vee
A

I Cheap and Easy
1. e i . Power Supply o o
I 2F I 25F 1S N N o
— = 110VAC 6 1N4001 i 1N4001
4 8 =
D2
»
4l
1N4001 1N4148

Title
60Hz interrupt timekeeping by Mark Thissen

iZe | Document Number rv
A

ate: ‘Saturday, September 11, 1999 foheet T of T

AN003401-Z8X0500

Application Note
Timekeeping with Z8 Microcontrollers

7
& 31

Figure 14. Timekeeping Based on the 8-MHz Crystal (1 of 2)

J1A
1 To VCC Bus
6-9 VDC V2 O S
Wall Transformer |_| 2
O
R1
10 Ohms
—1— C1
0.01uF
D1
5.1V Zener Diode

AN003401-Z8X0500

Application Note
Timekeeping with Z8 Microcontrollers

32

Figure 15. Timekeeping Based on the 8-MHz Crystal (2 of 2)

VCC_+5VDC
N~

:u

1

us :Tvcc_'svnc

TJI«TMH

VW
VW
VW
VW
VM
VWM
VWM
VWM
RPACK

2% 19

POOIAD, PYIAI8 [-prX

| P pasiag b

T POAZ P3GIATO X

POAT P3TIAT [—X

Ye—p] Poding

¥—r{PosiAs P20 -;é—

Y POSIAS P2AIDY [y

¥—{POTIAT P22 [

_m_zs P30/PGN Eﬁ;gi -

T PO pasis |
PRIEPH P26ID6 [
PIAVPP P27ID7

utt

u12

u14

14
14

wT:I

XTALITCE
XTAL?

=
=
=)

1

Vcc
Vcc

s

Z86E40

N cu_x
c)-nrnuom>
c:-nmoom»
q,-nmoom»
q;-nmoom»

CT =Upper Colon Dot
CB = Lower Colon Dot

R VCC_+5VDC VCC_+5VDC
} R 220 OHM
R4

R1KOHM

RS

R2
} R 220 OHM R1K oK

sw2

swW1
e
[

0

SW PUSHBUTTON MIN.

SWPUSHBUTTON HRS.
Y1

1

I
'EgYSTAL 8MHz. 1
APACITOR 27pF

Lo

L.
g CAPACITOR 27pF

AN003401-Z8X0500

	Timekeeping with Z8 Microcontrollers
	General Overview
	Discussion
	Theory of Operation

	Summary
	Technical Support
	Source Code
	Timing Diagrams and Tables
	Technical Drawings

	Test Procedure
	Equipment Used
	General Test Setup and Execution
	Test Results

	Appendix
	Schematics

