
ZiLOG Worldwide Headquarters • 532 Race Street • San Jose, CA 95126
Telephone: 408.558.8500 • Fax: 408.558.8300 • www.zilog.com

White Paper

Using the ZiLOG XTools
eZ80Acclaim!™ C-Compiler

WP000501-0104

http://www.zilog.com

White Paper
Using the ZiLOG XTools eZ80Acclaim!™ C-Compiler
Abstract
The Xtools eZ80Acclaim!™ C compiler is an optimizing compiler for C code based
on the ANSI C standard, with modifications to support specialized needs of the
embedded developer. Basic information about the use of the compiler and details
of how it supports particular eZ80Acclaim!™ features are given in the ZiLOG
Developer Studio II User Manual. This white paper is oriented toward helping
users make the most effective use of the compiler by describing how to deal with
some specific issues that often arise in customer usage. We place a special
emphasis on practical tips about using the compiler to create efficient code with a
small footprint.

We will begin with a short description of how the Xtools compiler differs from a
pure implementation of the ANSI C Standard; this section should clarify exactly
what the compiler is. Then we will talk about how to use the compiler, giving
guidelines for writing code and creating projects that make good use of the com-
piler.

Embedded Modifications to the ANSI C Standard
In most ways the Xtools eZ80Acclaim!™ compiler is simply an implementation of
the ANSI C Standard. However, tailoring a development tool to the needs of the
embedded system developer means making a few changes to the standard.
Some of these are extensions to the standard which add special capabilities for
the embedded arena, and others are restrictions – areas where the standard calls
for features that are unnecessary or too bloated to use in embedded applications.

The eZ80Acclaim!™ compiler provides the language extension keyword interrupt
to make interrupt handler development easier. This keyword is available only as a
function qualifier, for example:

void interrupt my_handler (void)

The compiler responds to the interrupt keyword by automatically generating code
to save machine state on function entry and restore it on function entry. Since
interrupt handlers are not explicitly called as other functions are, they cannot take
arguments or return values; both the parameter list and return type must be void.
See the ZDS II User Manual -- eZ80Acclaim!™ (UM0144) for more details.

Another extension to the C standard is the ability to embed eZ80Acclaim!™
assembly code inside a C program. This makes it easy to create a project in which
only certain performance-critical procedures, or even critical sections of a func-
tion, are coded in assembly while the bulk of the application is developed in C.
The ZDS II User Manual -- eZ80Acclaim!™ (UM0144) describes two methods for
embedding assembly code in a C file.

There are several areas in which the Xtools eZ80Acclaim!™ compiler by design
does not support the full ANSI Standard. The largest group of these is the omis-
WP000501-0104 Abstract

White Paper
Using the ZiLOG XTools eZ80Acclaim!™ C-Compiler

3

sion of parts of the Standard Library which are not useful for embedded applica-
tions, such as those relating to file I/O and other services that would typically be
provided in a desktop operating system. This type of limitation is common enough
that ANSI actually designates a class of compilers with the term free-standing
implementation, to indicate that they are intended to be used in an environment
where the services of a large-scale operating system are not available. A free-
standing implementation is only required to support the part of the Standard
Library contained in the headers <stddef.h>, <stdarg.h>, <limits.h>, and <float.h>.

The Xtools eZ80Acclaim!™ compiler actually implements much more of the Stan-
dard Library than required by this definition, including the majority of the headers
and functions of the Standard Library. These library modules are delivered with
the compiler inside each distribution of ZDS II, in the form of both source code and
pre-compiled libraries. For a full listing of the library functions supported by the
compiler, see the ZDS II User Manual -- eZ80Acclaim!™ (UM0144).

Because the eZ80Acclaim!™ is an 8/16/24-bit processor, double-precision (64-bit)
floating-point computations would be very slow on the eZ80Acclaim!™ and are
not supported. The compiler treats the keyword double as being identical to float
and implements single-precision IEEE standard floating-point values in either
case. For performance reasons, the Xtools compiler does not implement the full
IEEE floating-point standard: overflow/underflow detection and the NotANumber
convention are not supported. These restrictions should not affect most embed-
ded developers’ use of floating-point computation.

Returning C structs from a function by value is expensive and slow, two penalties
that should generally be avoided in the embedded world. The alternative of pass-
ing structs by pointer as function arguments, allowing the called function to modify
them if desired, is much better programming practice. In the Xtools compiler,
returning a struct by value is not allowed.

Guidelines for Writing Robust and Efficient Code
In addition to standard good practice for developing C applications in any environ-
ment, there are some additional issues that embedded developers need to con-
cern themselves with, especially when trying to keep code size to a minimum. In
this section we offer some advice on several topics that frequently cause prob-
lems in user applications: ANSI type promotions, the volatile keyword, large local
arrays, use of the floating-point library, and the standard library function sprintf().

ANSI Promotions
To be ANSI compliant, the Xtools eZ80Acclaim!™ compiler must, of course, follow
all the rules of the ANSI Standard in areas where the standard states that a given
behavior is mandatory. Some of the standard’s rules for integer type promotions
require the compiler to generate code that is both much larger than necessary and
WP000501-0104 Guidelines for Writing Robust and Efficient Code

White Paper
Using the ZiLOG XTools eZ80Acclaim!™ C-Compiler

4

almost certain not to work as intended. There are a couple of approaches to
avoiding both of these problems. In this section we first explain the reason for this
issue and then describe how to avoid it.

The standard has fairly elaborate rules for the promotion of integer types (elabo-
rate partly because of C’s convention that the actual sizes of the integer types can
vary from one machine to another). The basic idea is that in every operation that
takes two integer operands, the code should make sure that the two operands are
of the same real type (i.e., occupy the same number of bytes) before proceeding
when the operation takes place. To ensure this, if the types are different then the
smaller type is “promoted” to the larger type before doing the operation. For exam-
ple, if an 8-bit char is to be compared to a 32-bit long, the char will first be pro-
moted by converting it to a long; then two longs are compared.

This promotion rule wreaks havoc in embedded applications most often because
of another rule of the standard: the data type of any integer constant value is “int”
unless prefixed with “U” (making it an unsigned int) or “L” (making it a long). Notice
that there is no way to designate that an integer constant should be treated as a
char. This means that in simple code like

char x;
x = ‘T‘;

or
char y;
...
y &= 0x55;

the constants ‘T‘ (i.e., the ASCII code for capital T) and 0x55 are to be treated as
being of int type. Despite the almost irresistible tendency of the embedded pro-
grammer to think of these as “char constants”, they are not, according to the stan-
dard.

The following example will illustrate the problems that result from this situation.
Consider the code

char buffer[20];
...
if (buffer[0] == 0xff) do_something();

This code will cause two problems. First, unnecessary object code will be gener-
ated to promote the char value buffer[0] to an int so that it can be compared to the
int value 0xff. But more surprisingly, the comparison will always say that the two
values are unequal, even when the value of buffer[0] is 0xff! That happens
because buffer, not being explicitly stated to be unsigned, is taken to be an array
of signed chars. Therefore, when converting it to an int (which by default is 24 bits
in the eZ80Acclaim!™), its value is sign-extended to 0xffffff. However, the constant
is taken to be already a signed int, so written in the same format its value is
0x0000ff. This is virtually certain not to be the behavior intended by the developer,
WP000501-0104 Guidelines for Writing Robust and Efficient Code

White Paper
Using the ZiLOG XTools eZ80Acclaim!™ C-Compiler

5

but it is correct compiler behavior and is required for compliance with the ANSI
standard. The most widely used C compiler for the desktop behaves the same
way. What’s unique to the embedded environment is just the prevalence of code
like this as designers, rightly, try to minimize the data sizes of their variables to
reduce memory requirements.

Aside from the incorrectness issue (from the perspective of the code designer’s
intentions), the code bloat problem can easily be even worse than we have sug-
gested so far. Consider code like:

char a, b, c;
...
a = (b | c) & 3;

Since 3 is an int in this expression, the compiler has to generate code to promote
both b and c to ints, do all the operations on the right-hand side of the assignment
on int (24-bit) quantities, and then convert the result back to a char at the end of
the statement before assigning it to a.

Fortunately, there are two relatively easy ways to avoid all of these problems. The
surest and most portable is to explicitly cast char constants to char:

char buffer[20];
...
if (buffer[0] == (char)0xff) do_something();
/* Now it works! */

This is the only way to create char constants while remaining in strict compliance
with the standard. Since this uses only elements of the language standard, it is
guaranteed to give the same results on any platform and with any compiler. It also
forces the programmer to think about and explicitly specify the sizes of the con-
stants used in his code, which is another step toward a cleaner, less ambiguous
coding style.

The Xtools C compiler provides another way to get this result. The user can dis-
able strict ANSI promotions by deselecting the check box for Project > Settings >
C > Code Generation > ANSI Promotions. This will have the same effect of
treating both sides of the comparison in the last example as (char) type. In the
great majority of cases this should be safe to do. The one caveat of this approach
is that the compiler then has no way of knowing about any exceptional cases in
which the programmer really does want a constant – which could fit into a char,
and is used with chars in an expression – to be treated as an int. This can some-
times cause problems if the constant is used as part of a complex expression as in
the next example. As usual, the only sure solution is for the programmer to think
carefully about data sizes in any cases where that’s a critical concern.

In some cases, the compiler may be able to avoid the problems we have dis-
cussed here by optimizing away the unwanted promotions. However, it is more
difficult than it would first appear to implement an optimization that does this as
WP000501-0104 Guidelines for Writing Robust and Efficient Code

White Paper
Using the ZiLOG XTools eZ80Acclaim!™ C-Compiler

6

safely as is required. Compliance with the standard requires that even if the pro-
motions are not actually done, the results in all cases (i.e., for all possible values
of the operands) must be the same as if the promotion had been done. Clearly the
safest way for the compiler to comply with this requirement is to actually do the
promotions. The user’s best approach to avoiding unwanted promotions is there-
fore to take one of the two approaches described above to make sure they aren’t
done.

On the other end of the spectrum, the absence of promotions when needed can
also sometimes cause incorrect results. Consider this code, in an application
where the size of an int has been defined to be 16 bits:

#define PROCESSOR_CLOCK_FREQ 18432000 /* 18.432 MHz */
#define UART_BIT_RATE 9600 /* 9.6 kbit/s */
#define BRDIV (PROCESSOR_CLOCK_FREQ / (UART_BIT_RATE * 16))

The calculation for BRDIV comes out completely wrong.

Here the culprit is a necessary promotion that does not take place. Again, both
9600 and 16 are taken by the compiler to be ints. But in the calculation of BRDIV,
their product is too large to fit into a 16-bit quantity, and so is truncated, giving a
completely incorrect result. (The constant 18432000 in this case was treated as a
long, since the compiler can tell that it’s too large to fit into a 16-bit int.) The pro-
motion to a long doesn’t occur until the next step in the complex calculation when
this product has to be divided into a long, which is too late to save the situation.
Again, the compiler behavior is correct but the result is wrong.

There are several ways to fix this problem. The safest is to promote the constants
involved to longs (which by the rules of type conversion, will force any other val-
ues used in calculations with these constants also to be longs). So either or both
of the following changes will solve the problem:

#define UART_BIT_RATE 9600L /* 9.6 kbit/s */

or
#define BRDIV (PROCESSOR_CLOCK_FREQ / UART_BIT_RATE * 16L))

Volatile
The keyword volatile was a relatively late addition to the ANSI standard, but is cru-
cial in many embedded applications. Normally, a compiler assumes that the val-
ues of variables do not change except when the program writes to them explicitly.
But this assumption can be disastrous in an embedded system where the variable
represents the contents of a hardware register that can be modified asynchro-
nously by the system hardware. As an example, consider code like:

int system_var = 0;

for (counter = 0; counter < 1000; counter++)
{

WP000501-0104 Guidelines for Writing Robust and Efficient Code

White Paper
Using the ZiLOG XTools eZ80Acclaim!™ C-Compiler

7

if (system_var)
{

/* ... critical processing loop ... */
system_var = 0;

}
}

Here the programmer’s intent is that system_var, which is updated by hardware
when certain system events take place, be used as a flag to drive critical process-
ing when the events occur. However, the optimizing compiler can see that
system_var is only assigned to in two statements, and is assigned to be 0 in both
locations. Therefore, the compiler would normally be entitled to assume that
system_var is 0 at all times. In this case, that means that the condition if
(system_var) can never be true; therefore the critical processing loop can never
be reached (it is “dead code”). Therefore, in turn, the entire contents of the for loop
are empty and the compiler is justified in generating no object code for this at all!
Here’s a case where the compiler’s reduction of code size is a bit too extreme for
anyone’s taste.

The solution is to declare system_var as volatile:

volatile int system_var = 0;

The volatile keyword was added to the language to handle exactly this situation. It
lets the compiler know that this variable must be assumed to be unknown at all
times, so that its value must be freshly read every time it is accessed.

Large Local Arrays
Due to the eZ80Acclaim!™ processor architecture, accesses to stack variables
can be done efficiently as long as the stack offset is no larger than 127 bytes. For
larger stack offsets, the variables must be accessed by a different method which is
much less efficient in both code size and execution speed. This limitation doesn’t
often come into play unless the programmer allocates a local array that exceeds
this size. Manipulating large arrays will be much more efficient if the arrays are
allocated as global or static variables.

Floating-Point Library
Users who are working with floating-point values in their calculations need to
make sure that they are linking to the “real” floating-point library. The Xtools distri-
bution provides a dummy version of the floating-point library as well, as docu-
mented in the section “Troubleshooting C Programs” of the ZDS II User Manual.
In that dummy version, all of the floating-point functions are replaced with
stubbed-out versions, reducing code size to a minimum. If these stubbed-out ver-
sions are linked into an application that does actual floating-point calculations,
garbage results will be computed.
WP000501-0104 Guidelines for Writing Robust and Efficient Code

White Paper
Using the ZiLOG XTools eZ80Acclaim!™ C-Compiler

8

To link in the real floating-point library, make sure you have checked the box
Project > Settings > C > General > Use Floating Point Library. As with any
library, the linker will pull in functions from the floating point library only if they are
actually called by your application.

The reason for the existence of the dummy floating-point library is explained in the
item on sprintf(() below.

Sprintf
One of the most common causes of user code becoming substantially larger than
expected is the use of the standard library function sprintf(). This is, of course,
commonly used in embedded applications for tasks like outputting text to a display
device. Unfortunately, it typically increases the size of the overall application by
something in the neighborhood of 5 kbytes, even if used only for a couple of sim-
ple calls.

The problem is that sprintf(), like all members of the printf() family of functions,
must be prepared to accept a great number of formats and so the code for sprintf()
contains calls to a large number of other functions. The ZDS II linker is smart and,
when resolving symbols, will only link in code for functions that may be called by
the application – it doesn’t link in the entire library containing those functions. So if
you check the box Project > Settings > Linker > Input > Use C Runtime
Library, which allows the linker to link to the pre-compiled library if necessary to
resolve function calls, it will pull in only those functions called by sprintf(), plus the
functions called by those functions, etc. The trouble is that by the time all these
calls are resolved, a large number of functions have been pulled in at a significant
cost in code size. The basic difficulty here is that the linker can see the large num-
ber of functions that may be called by sprintf(), but doesn’t know that in your appli-
cation the number of functions that will be called may be much smaller if, for
example, you only use one or two simple formats.

There are several things the user may be able to do to reduce this impact. Obvi-
ously, if your application has no need of sprintf() you will be better off avoiding it,
but in many cases this isn’t possible. The next most effective weapon is to disable
the floating-point library, if you aren’t doing any floating-point calculations. Users
are often surprised to find functions from the floating-point library being linked to
their application when the application doesn’t use floating-point at all. The culprit
is usually sprintf() or one of its relatives. Since sprintf() contains calls to (very
large) functions for formatting floating-point values, the linker has to resolve those
calls by linking those functions to your application at a large cost in code bloat. It is
for exactly this reason that the Xtools distribution includes the stubbed-out version
of the floating-point library, described above under the heading “Floating-Point
Library”. This will reduce the code size significantly. To link with this dummy ver-
sion of the floating-point library, deselect the check box Project > Settings > C >
General > Use Floating Point Library.
WP000501-0104 Guidelines for Writing Robust and Efficient Code

White Paper
Using the ZiLOG XTools eZ80Acclaim!™ C-Compiler

9

If code size is of critical concern, you may be able to get a significant savings by
modifying the source code of the relevant modules in the standard library. This is
somewhat laborious but may be worthwhile depending on circumstances. The
module to focus on if you try this is uprint.c, which does most of the work for
sprintf() and can be trimmed with some trial and error, removing code that sup-
ports unused formats.

Project Settings and Configuration

In this final section, we offer a few comments on project settings and configuration
issues.

Optimization settings

The best combination of optimization settings can depend on the mix of code
within a given project, so when trying to obtain the smallest code size or fastest
execution, some experimentation is a good idea. The two main optimizations are
available on the page Project > Settings > C > General > Optimizations: Mini-
mize Size and Maximize Speed. Since in most cases smaller code also runs
faster, in the great majority of C code these two optimizations will produce exactly
the same object code, but there can be small differences. It is also possible that
even the “Minimum Size” optimization can actually increase code size, by apply-
ing a trade-off that will cut code size in most applications but doesn’t work in your
particular application. (One particular case that is known to cause this is the pres-
ence of switch statements with only 2 to 3 cases.) Use your map file to check code
size results and, again, experiment.

For reasons described above in the section on ANSI Promotions, disabling the
setting Project > Settings > C > Code Generation > ANSI Promotions will elim-
inate some type conversions that can, for some applications, result in a significant
reduction in code size and execution time.

Another setting which usually, but not always, gives a modest decrease in code
size is to select Project > Settings > C > General > Debug Information > None.
When the compiler is asked to generate debug information, it also disables some
optimizations that tend to save space but confuse the debugger.

Greater control over individual optimizations can be achieved through the selec-
tion Project > Settings > C > Optimizations > Optimizations > Custom. How-
ever, there is generally no reason to go to this level of granularity. The Xtools
compiler applies all the optimizations that it safely can, consistent with the higher-
level optimization settings.
WP000501-0104 Project Settings and Configuration

White Paper
Using the ZiLOG XTools eZ80Acclaim!™ C-Compiler

10
Standard setup
The default boot module provided for eZ80Acclaim!™ projects sets up a number
of required initializations. Users who for whatever reason choose not to use the
default boot module need to understand the services provided by this module and
create their own replacements if necessary. The default module, whose source
code is included in the release, is usually a good place to start and a good exam-
ple. The contents of this module are described in the FAQ in the ZDS II installation
for each release. In a nutshell, this code sets up some necessary vector and jump
tables, disables peripheral interrupts during startup, initializes the memory device
arrangement, and then initializes the C runtime environment.

One item that is sometimes overlooked when users create custom boot modules
is to set the symbol __heapbot appropriately. If any dynamic memory allocation is
done in the user’s application, malloc() will ultimately need to resolve this symbol
so that it knows where to find the memory heap. Choosing an appropriate location
for this depends on details of the user’s memory map.

Header Files and Project Organization
The ZDS II distribution includes specific header files for each member of the
eZ80Acclaim!™ family, which simplify the job of developing embedded C code for
the individual family members (e.g., eZ80F91, eZ80L92, etc.). These header files
define names and addresses (in the processor’s internal I/O address space) of all
the Special Function Registers (SFRs) of the given family member. When the
appropriate header file is included in your project, you can access each SFR by
name in your C code. The SFR names used are given in the Register Map section
of the Product Specification for that family member, which is included among the
documentation in the ZDS II installation.

It’s not necessary to specify the variant-specific header file such as eZ80F91.h in
your #include statements. Instead, you can simply say

include <ez80.h>

When this file is included, it will automatically pull in only the single variant-specific
header that befits your project. The compiler determines which header to use on
the basis of the setting Project > Settings > General > CPU. Note that if you
examine the “External Dependencies” in the project panel of the ZDS II IDE, you
will see all of the variant-specific header files because the IDE doesn’t take
account of which #ifdef statements inside <ez80.h> evaluate to true or false. How-
ever, only one of these headers is really pulled into your project.

Since these headers are all located in the directory “include” below your ZDS II
installation directory, that directory must be among the directories listed in Project
> Settings > C > Preprocessor >Include Paths. You do not ordinarily need to do
anything to set this up, as it should be included by default in the “User Paths” part
of that dialog setting.
WP000501-0104 Project Settings and Configuration

White Paper
Using the ZiLOG XTools eZ80Acclaim!™ C-Compiler

11
The Xtools toolchain places no special requirements on the directory structure you
use to organize your project. You can use the Project > Add Files feature to
browse to your source files wherever you choose to locate them. As with any soft-
ware build system, you will need to make sure that if you change the locations of
header files and object files from the defaults, you also update the relevant project
settings so that the compiler and linker, respectively, can find them.

The one subtlety that can crop up occurs if you are using a fixed Link Control File
rather than letting the system build a fresh one with each build to match your
project settings. This happens if you have selected Project > Settings > Linker >
Input > Link Control File > Use Existing. In this case, when you add a new file
to your project and build it, the linker does not automatically become aware of the
new object file and add it to the link. You will need to go in and edit the Link Con-
trol File to add the new object.
WP000501-0104 Project Settings and Configuration

White Paper
Using the ZiLOG XTools eZ80Acclaim!™ C-Compiler

12
This publication is subject to replacement by a later edition. To determine whether a later edition
exists, or to request copies of publications, contact:

ZiLOG Worldwide Customer Support Center
532 Race Street
San Jose, CA 95126
USA
Telephone: 408.558.8500
Fax: 408.558.8300
www.zilog.com

ZiLOG is a registered trademark of ZiLOG Inc. in the United States and in other countries. All other
products and/or service names mentioned herein may be trademarks of the companies with which
they are associated.

Information Integrity
The information contained within this document has been verified according to the general
principles of electrical and mechanical engineering. Any applicable source code illustrated in the
document was either written by an authorized ZiLOG employee or licensed consultant. Permission
to use these codes in any form, besides the intended application, must be approved through a
license agreement between both parties. ZiLOG will not be responsible for any code(s) used
beyond the intended application. Contact the local ZiLOG Sales Office to obtain necessary license
agreements.

Document Disclaimer
©2004 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices, applications,
or technology described is intended to suggest possible uses and may be superseded. ZiLOG, INC. DOES
NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE
INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZiLOG ALSO DOES
NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER
TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE.
Devices sold by ZiLOG, Inc. are covered by warranty and limitation of liability provisions appearing in the
ZiLOG, Inc. Terms and Conditions of Sale. ZiLOG, Inc. makes no warranty of merchantability or fitness for any
purpose Except with the express written approval of ZiLOG, use of information, devices, or technology as
critical components of life support systems is not authorized. No licenses are conveyed, implicitly or
otherwise, by this document under any intellectual property rights.
WP000501-0104 ZiLOG Worldwide Customer Support Center

http://www.zilog.com

	Using the ZiLOG XTools eZ80Acclaim!™ C-Compiler
	Abstract
	Embedded Modifications to the ANSI C Standard
	Guidelines for Writing Robust and Efficient Code
	ANSI Promotions
	Volatile
	Large Local Arrays
	Floating-Point Library
	Sprintf

	Project Settings and Configuration
	Optimization settings
	Standard setup
	Header Files and Project Organization

