
                                                                                                

T

 

echnical 

 

Article

 

How Code and Data are Placed 

 

in Memory Using ZDS

 

 

 

II

 

T

 

A000402-0404
Introduction
What are the commands and settings in ZDS II  that determine where code is placed in memory? How does 
ZDS II  handle the data initializations that are required in C? How does the Link Configuration feature 
affect code and data placement and how does this work with start-up code? This Technical Article answers 
these questions in the discussion that follows.

For definitions and descriptions of the terms used in this Technical Article, please see the 
ZiLOG Developer Studio II–eZ80 User Manual (UM0144).

Discussion
The following ZDS II  GUI controls are used to determine how and where code and data are placed and 
used on a target system. Each control is highlighted in italic typeface. All controls start from the Project 
Settings command in the Project menu. The Project Settings dialog box contains 5 tabs, as shown.

1. The Target tab in the Project Settings dialog—please see Figure 1.

a. Memory 

Figure 1. The Project Settings Dialog Box—Target Tab

Note:
ZiLOG Worldwide Headquarters • 532 Race Street • San Jose, CA  95126
Telephone: 408.558.8500 • Fax: 408.558.8300 • www.ZiLOG.com

http://www.ZiLOG.com
http://www.zilog.com/docs/ez80/software/um0123.pdf
http://www.zilog.com/docs/ez80/software/um0123.pdf


    

2

 

How Code and Data are Placed in Memory Using ZDS

 

 

 

II

 

Technical Article

                    
2. The Linker tab in the Project Settings dialog.

b. General Category—please see Figure 2.

i. Link Configuration 

Figure 2. The Project Settings Dialog Box—Linker Tab, General
TA000402-0404 Discussion



    

3

 

How Code and Data are Placed in Memory Using ZDS

 

 

 

II

 

Technical Article

               
c. Input Category—please see Figure 3.

i. Startup Module 

ii. Link Control File 

Figure 3. The Project Settings Dialog Box—Linker Tab, Input
TA000402-0404 Discussion



    

4

 

How Code and Data are Placed in Memory Using ZDS

 

 

 

II

 

Technical Article

           
d. Output Category—please see Figure 4.

i. Executable Format

Figure 4. The Project Settings Dialog Box—Linker Tab, Output
TA000402-0404 Discussion



    

5

 

How Code and Data are Placed in Memory Using ZDS

 

 

 

II

 

Technical Article

                        

re 
3. The Debugger tab in the Project Settings dialog.

a. Initializations—please see Figure 5.

The following files are affected by the settings in the seven controls above:

Map File. This file is output from a build when the Generate Map File box is checked in the General 
Category of the Linker tab of the Project Settings dialog box. The file contains the same filename as the 
project name, with the addition of a .map extension. A text editor can be used to display this type of file.

Link Control File. This file is created when the Project Settings dialog box is closed and Create New is 
selected. The file contains the same filename as the project name, with the addition of a .lnk extension. (On 
some operating systems, the .lnk extension is not shown.) If Custom is selected, _cst is appended to the 
filename. A text editor can be used to display this type of file.

The following section describes how each of the above seven controls determines where code and data a
placed and their effects as shown in the Map and Link Control files.

Please note that the terms ROM and RAM found in the GUI displays, the Map files, the Link 
Control files, and the ZDS II  documentation are used in different contexts. The adjective 
modifiers Memory Label or labeled and Linker Designation or designated are therefore 
included to keep the contexts separate.

Memory Control

The settings in the Memory Control group inform the linker of the physical address locations of the mem-
ory spaces labeled ROM and RAM as well as the I/O spaces labeled ExtIO and IntIO. Normally, memory 

Figure 5.  The Initializations Dialog Box

Note:
TA000402-0404 Discussion



6How Code and Data are Placed in Memory Using ZDS II
Technical Article

itial

y 

tartup 
 

the 
labeled ROM is specified with physical ROM memory locations and memory labeled RAM is specified 
with RAM memory locations, but not necessarily. The memory space labeled ROM is normally the mem-
ory space in which code is executed and initialized variables are stored. This memory can physically be 
RAM or ROM memory. The memory space labeled RAM is normally the memory space where nonin-
ized data (buffer space) is located and initialized data is copied to. This memory must physically be RAM 
memory. 

The specification of the physical address range for noncontiguous blocks is determined b
separating the ranges with commas.

Link Configuration Control

The Link Configuration Control feature of ZDS II  aids in the generation of the correct linker directives in 
the Link Control file for the selected configuration. There are four configurations provided by ZDS II . By 
default, the linker places the CODE and DATA COPY segments in memory designated as ROM and the 
BSS and DATA segments in memory designated as RAM. Each is based on the assumption that a s
module will copy the data segments—and in some cases the code segment—from the memory designated
ROM to the memory designated RAM. A standard Startup Module is provided with ZDS II  (see the Startup 
Module Control section on page 8). It is designed to work with all of the link configurations, although a 
user startup module can be used instead.

All RAM

The All RAM configuration assumes that the memory labeled ROM is specified with physical RAM mem-
ory locations and that the linker will consecutively locate the memory designated as RAM and ROM to this 
memory labeled ROM. It also assumes that the Startup Module will create a BSS section and move the 
DATA_COPY section to the DATA section. As in all configurations, the program code accesses data in 
DATA section, which is always in memory designated as RAM. Please see Figure 6.

Standard

The Standard configuration assumes that the memory labeled ROM is specified with physical ROM mem-
ory locations and that the memory labeled RAM is specified with physical RAM memory locations. In this 

Figure 6. All RAM Configuration

Note:

ROM

BSS

DATA

DATA COPY

CODE

Memory
Label

Linker
Designation

RAM

ROM
TA000402-0404 Discussion



7How Code and Data are Placed in Memory Using ZDS II
Technical Article

 data 
case, the linker locates the memory designated ROM to the memory labeled ROM. Likewise, the linker 
locates the memory designated RAM to the memory labeled RAM. This configuration also assumes that 
the Startup Module will create the BSS section in the memory space labeled RAM and transfer the
from DATA_COPY in the memory space labeled ROM to the DATA section in the memory space also 
labeled RAM. Please see Figure 7.

Copy to RAM

The Copy to RAM configuration uses the same assumptions as the Standard configuration with the addi-
tional assumption that the Startup Module will also copy code from the memory designated ROM to the 
memory designated RAM. The code copied is from the CODE_COPY section starting at __low_romcode 
to the memory designated RAM starting at __low_code. The length of this code is defined in the Link 
Control file by len_code. In this configuration, __copy_code_to_ram is also defined in the Link Con-
trol file for the Startup Module to determine if this transfer should take place. Please see Figure 8.

In ZDS II  versions 4.4.0 or newer, the Standard start-up file must be selected.

Figure 7. Standard Configuration

Figure 8. Copy To RAM Configuration

BSS

DATA

DATA COPY

CODE

Memory
Label

Linker
Designation

RAM

ROM

RAM

ROM

Note:

BSS

DATA

__low_romcode

__low_code

DATA COPY

CODE

Memory
Label

Linker
Designation

RAM

ROM

RAM

ROM
TA000402-0404 Discussion



8How Code and Data are Placed in Memory Using ZDS II
Technical Article

or 

e 

e 

d

Custom

The Custom configuration assumes that the user will supply the Link Configuration File and the Startup 
Module. This configuration, however, creates a Link Control file that is the same as the one generated f
the Standard configuration. This configuration offers the user something to start with and to modify as 
required. This Link Control file includes definitions for a startup module if the Standard Startup File is 
selected in the Input Category within the Linker Tab of the Projects Settings dialog box. Please see Figure 
9.

Startup Module Control

The Startup Module Control feature of ZDS II  tells the linker if the Standard startup module should be 
included or that the user has provided one in the project. If the Standard Startup Module is selected, th
linker includes the Standard Startup Module, startup, in the build. The Startup Module is taken from the 
ZDS II  rtl subdirectory. The source code for this module is contained in the file startup.asm found in 
the source subdirectory to the rtl directory. Because only the object module is used in the project, th
source code is not found in the project file list. The start-up object startup.obj does, however, show up 
in the Link Control file.

If a startup module is user-provided, then the user must include the startup module in the project list. This 
startup module must ensure that the code and data are moved to the correct locations as required, depen-
ing on the selected configuration.

Because the startup module, be it standard or user, is the first code executed after reset, it should be the first 
module in the sequence of objects placed in the CODE segment (as shown in the Link Control file). It con-
tains the code that initializes the registers in the eZ80® device, initializes the BSS section in RAM, and 
copies the DATA_COPY segment in ROM to the DATA segment in RAM. The Standard Startup Module 
also checks if __copy_code_to_ram is defined as 0 or 1 in the Link Control file. If it is defined as 1, then 
the Standard Startup Module also copies the CODE segment to RAM using the __low_romcode, 
__low_code, and __len_code defines in the Link Control file.

Figure 9. Custom Configuration

BSS

DATA

DATA COPY

CODE

Memory
Label

Linker
Designation

RAM

ROM

RAM

ROM
TA000402-0404 Discussion



9How Code and Data are Placed in Memory Using ZDS II
Technical Article

 
 

t), 

 the 

ed 
 

 

Link Control File Control

The Link Control File Control is provided by ZDS II  to select the Link Control File used in the build. There 
are three selections: Create New, Custom, and Use Existing. The Create New selection is normally used in
the beginning phase of a project where settings are being changed. These changes are then captured in a
new Link Control file to be used in subsequent builds. With Create New selected, the Add Directives button 
is activated to allow the user to add additional Linker commands.

A custom Link Control File Control based on the current link control file (Create New or Use Existing) is 
created with _cst added to the filename. This addition provides an easy way switch between two link con-
trol files according to user requirements. When Custom is selected, the Edit Custom button is activated to 
allow the user to edit the custom link control file.

If it is determined that a link control file from another source should be used (e.g, from another projec
the Use Existing selection is used. The Browse button is activated to navigate to the existing link control 
file. This control can also be used to select link control files that have been renamed for safekeeping or for 
saving other configurations. This feature can be used to select the link control file for the build.

Link Control File

The Link Control file is created from the settings in ZDS II . It contains all the linker commands for the 
build. These linker commands include the linker options, the specification of the output format, the map-
ping of linker designated ROM and RAM memory to physical ROM and RAM locations; and the defines 
that can be used in the code execution. The linker commands are created based on the configuration 
selected and the project settings in ZDS II . It also contains comments indicating the parameters used for
compiler and assembler.

The linker groups compiled/assembled objects into the standard segments CODE, DATA, TEXT, STR-
SECT, BSS, and DATA_COPY and to the user-defined segments. Data, based on the type of data, is plac
into one of the data segments DATA, TEXT, STRSECT, or BSS. Executable code is placed in the CODE
segment.

These segments are mapped to either memory designated as ROM or RAM. The designated ROM and 
RAM memories are mapped to the physical memory locations labeled ROM and RAM.

The data segments are usually mapped to memory designated as RAM and the CODE segment is usually 
mapped to memory designated as ROM.

The mapping from designated memory to the memories labeled ROM or RAM is made by default or by 
linker commands. By default. ROM-designated memory is mapped to memory labeled as ROM, and 
RAM-designated memory is mapped to memory labeled as RAM. The linker CHANGE command changes
the mapping.

The important linker commands in the Link Configuration File for each configuration are listed below.

Standard

The Link Configuration file for all configurations contain the RANGE linker command, as shown below.

RANGE ROM $0 : $0FFFFF
TA000402-0404 Discussion



10How Code and Data are Placed in Memory Using ZDS II
Technical Article
RANGE RAM $C00000 : $C7FFFF

The RANGE commands specify the address space for the Linker-designated ROM and RAM address 
spaces. It is taken from the physical address space specified in the ZDS II  Project Settings dialog box. In 
the Standard configuration, because ROM is mapped to ROM and RAM is mapped to RAM, the ROM and 
RAM physical address space specified in the Project Settings is mapped respectively to the ROM and 
RAM linker-designated memory address space.

Another important linker command is COPY, as shown below.

COPY DATA ROM

The COPY command is included in this Linker Configuration File to facilitate the storage of data segments 
in ROM so that they can be copied to the RAM linker-designated memory at execution time. The linker 
also ensures that the code contains addresses that access the DATA section in RAM instead of the 
DATA_COPY section in ROM. The start-up code uses the linker symbols to copy the DATA segment from 
ROM to RAM.

All RAM

In the All RAM configuration, the RANGE command is used differently than in the Standard configura-
tion, and it also contains the GROUP Linker command.

RANGE MEMORY $0 : $C7FFFF

GROUP MEMORY = ROM, RAM

The GROUP linker command is used to combine the Linker-designated ROM and RAM memories into 
one. The RANGE linker command is provided to specify the range of the memory group. 

With ROM and RAM designated as MEMORY (memory group), the linker designated ROM is mapped 
starting with the first (lowest) address space of MEMORY, and the linker designated RAM is mapped to 
the first address space in MEMORY following the ROM mapping (see the Map File section on page 11 for 
the All RAM configuration). When this configuration is selected, it is important that the specification of the 
address space for both physical ROM and RAM memory in the Memory Control is actual RAM memory. 
This action can be performed with the proper selection of Chip Selects.

Just as in the Standard configuration, a COPY command is included to make a copy of the DATA segment 
and to locate it in ROM.

COPY DATA ROM

This inclusion would not be necessary if a separate start-up file that did not copy the DATA from ROM to 
RAM is used instead of the standard startup file.
TA000402-0404 Discussion



11How Code and Data are Placed in Memory Using ZDS II
Technical Article

 

Copy to RAM

The RANGE linker commands in the Copy to RAM configuration are the same as in the Standard configu-
ration, which means that the Linker-designated ROM is ROM physical memory and the Linker-designated 
RAM is RAM physical memory.

RANGE ROM $0 : $0FFFFF
RANGE RAM $C00000 : $C7FFFF

In the Copy to RAM configuration, not only are DATA segments accessed from physical RAM, but also 
the CODE segments. The Linker command that makes this change is the CHANGE command, which is
shown below.

CHANGE CODE is RAM

As in the Standard configuration, a copy of the DATA segments must be made available for copy from 
ROM to RAM. However, in the Copy to RAM configuration, a copy of the CODE segments must also be 
made available for copy from ROM to RAM. Therefore, the COPY command is used for both the DATA 
and CODE segments, as follows:

COPY DATA ROM
COPY CODE ROM

The Copy to RAM configuration also includes a define that is set to 1.

define __copy_code_to_ram = 1

This define tag is used by the standard start-up code to determine if it must copy the CODE segment from 
ROM to RAM. The copy is performed when __copy_code_to_ram is set to 1. Only in this configuration 
is this define set to 1.

Custom

It is assumed that the user will provide the Link Control file for the Custom configuration. However, a 
default Link Control file is provided as a starting point that the user can modify. The important linker com-
mands found in this default control file follow the Standard configuration.

Map File

A map file is generated in a build if the Generate Map File checkbox is checked in the General Category 
inset within the Linker Tab of the Project Settings dialog box. It contains everything in the Link Control 
file and describes where code and data are located. ROM and RAM in the map file are the same as the 
Linker-designated ROM and RAM described in the Link Configuration Control section on page 6. 

The addresses generated in the map file are a result of the Link Configuration and the 
addresses specified in the Memory inset within the Target tab of the Project Settings dialog 
box.

Note:
TA000402-0404 Discussion



12How Code and Data are Placed in Memory Using ZDS II
Technical Article

 

 
 

Important results from the map files for each configuration are shown as follows. Please refer to the entries
used in the Memory settings for the ROM and RAM physical memory addresses.

Standard

The map file for the Standard configuration shows that the Linker-designated memories ROM and RAM 
are mapped to the ROM and RAM physical memory spaces, respectively, as shown in the following map 
file:

Space Base Top Size
------------- -------- -------- --------
RAM D:C00000 D:C00085 86h
ROM C:000000 C:000985 986h

Looking at one of the modules from the map file shows how each of the segments are mapped into the 
Linker-designated memory address space. BSS and DATA are mapped into the RAM physical memory 
space and CODE is mapped into the ROM physical memory space, as shown in the following map file:

Name Base Top Size
------------- -------- -------- --------
Segment: BSS D:C00016 D:C00079 64h
Segment: CODE C:0001B5 C:000204 50h
Segment: DATA D:C00000 D:C00015 16h

All RAM

The map file for the All RAM configuration shows that the Linker-designated memory ROM is first 
mapped to the group Memory, then followed by the mapping of the Linker designated RAM. In this case,
the memory specified for ROM in the ZDS II  memory control should be physical RAM memory space, as
shown in the following map file:

Group: Memory Base Top Size
------------- -------- -------- --------
Space: ROM 000000 000985 986h
Space: RAM 000986 000A0B 86h

The mapping of the segments can be visualized by one of the modules in the map file, as shown in the fol-
lowing map file:

Name Base Top Size
------------- -------- -------- --------
Segment: BSS D:00099C D:0009FF 64h
Segment: CODE C:0001B5 C:000204 50h
Segment: DATA D:000986 D:00099B 16h

In the above case, all segments are mapped to low memory.Note:
TA000402-0404 Discussion



13How Code and Data are Placed in Memory Using ZDS II
Technical Article

 

 
h 
and 
Copy to RAM

The map file for the Copy to RAM configuration shows the same mapping of the Linker-designated ROM 
and RAM to physical memory as in the Standard configuration. See the map file below.

Space Base Top Size
------------- -------- -------- --------
RAM D:C00000 D:C00844 845h
ROM C:000000 C:000985 986h

However, the above map file also shows that a copy of the CODE and DATA segments are made available 
in Linker-designated ROM, as shown in the following map file.

ROM Type Base Top Size
------------- ---------------- -------- -------- --------
.STARTUP normal data C:000000 C:00010F 110h
CODE * segment copy * C:0001C7 C:000985 7BFh
DATA * segment copy * C:0001B1 C:0001C6 16h

Finally, for a given module, both the DATA and the CODE segments accessed during execution are from 
physical RAM, as shown in the following map file.

Name Base Top Size
------------- -------- -------- --------
Segment: BSS D:C00016 D:C00079 64h
Segment: CODE D:C0008A D:C000D9 50h
Segment: DATA C:C00000 D:C00015 16h

Custom

Because the Link Control file for the Custom configuration is user-provided, the map file is generated 
based on the user’s Linker commands. The default Link Control file created by this configuration is the 
same as the Link Control file for the Standard configuration. The user can then modify the Link Control 
file starting with this configuration. Therefore, the map file for the Custom configuration is also the same as
the Standard map file, until modifications to the Link Control file are made by the user.

Executable Format Control

The Executable Format Control allows the user to specify the format of the linker output. Two main types 
of output files can be generated: load files that possess the .lod extension, or hex files that possess the 
.hex extension. The choice of output type is shown in the Link Control file by the filename extension for 
the load file. The load files are used by the ZDS II  debugger to download the code via the ZPAK II  Debug 
Interface Tool. The hex files can be used by other applications outside of ZDS II , such as the Flash Loader
utility that programs the Flash memory via the serial port. Because the hex file contains an address in eac
data record in memory, the Flash Loader uses this information to determine where to place the code 
data. With the newer versions of ZDS II , hex files can also be downloaded using ZPAK II .
TA000402-0404 Discussion



14How Code and Data are Placed in Memory Using ZDS II
Technical Article

 

Initialization Parameters Control

The Initialization Parameters Control is used only by the debugger and has no impact on the build. When 
the target is powered on, all of the eZ80® registers are set to their default values. This Control provides the 
debugger with the information necessary to initialize important registers, such as the Chip Select and PC
Counter registers, to values according to the target configuration and the placement of code. If the load file 
contains a startup module, the settings in the Initialization Parameters Control should agree with the set-
tings defined by the startup module. This relationship is also true when the ZDS II  Integrated Flash Loader 
is used. This Flash Loader utility can be found in version 4.4.2 or later of ZDS II  for eZ80® devices. When 
an external Flash Loader is used, the hex file must contain a startup module to initialize the registers. As a 
result, the settings in the Initialization Parameters Control are not used.
TA000402-0404 Discussion



15How Code and Data are Placed in Memory Using ZDS II
Technical Article

ES NO

ort
This publication is subject to replacement by a later edition. To determine whether a later edition exists, or 
to request copies of publications, contact:

ZiLOG Worldwide Headquarters
532 Race Street 
San Jose, CA 95126
Telephone: 408.558.8500
Fax: 408.558.8300
www.zilog.com

Document Disclaimer

ZiLOG is a registered trademark of ZiLOG Inc. in the United States and in other countries. All other products and/or 
service names mentioned herein may be trademarks of the companies with which they are associated.

©2004 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices, applications, or 
technology described is intended to suggest possible uses and may be superseded. ZiLOG, INC. DOT 
ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, 
DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZiLOG ALSO DOES NOT ASSUME LIA-
BILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF 
INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. Except with the 
express written approval of ZiLOG, use of information, devices, or technology as critical components of life supp 
systems is not authorized. No licenses are conveyed, implicitly or otherwise, by this document under any intellectual 
property rights.
TA000402-0404 Discussion

http://www.ZiLOG.com

	How Code and Data are Placed in Memory Using ZDS II Technical Article
	Introduction
	Discussion
	Memory Control
	Link Configuration Control
	Startup Module Control
	Link Control File Control
	Link Control File
	Map File
	Executable Format Control
	Initialization Parameters Control



