
<�2.75�75'4 5�/#07#.

%*#26'4��

#&&4'55�52#%'
INTRODUCTION

Two address spaces are available for the Z8PLUS MCU:

� Register file RAM contains addresses for all the control registers and all the general purpose registers.

� Program memory contains addresses for all memory locations where executable code and/or data are stored.

REGISTER FILE SPACE

The on-chip register file RAM is organized into 16 pages, where each page has 256 addressable memory loca-
tions. The first page (page 0) contains both control registers and general purpose registers. All the remaining
pages (pages 1 through 15) contain only general purpose registers. Figure 1-1 illustrates the complete register
file RAM space. As shown, control registers are located in the upper half of page 0. Any specific implemen-
tation of the Z8PLUS core may use only a subset of the complete register file RAM space.

Table 1-1 describes the Core Control Registers and Table 1-2 shows the Page 0 Register File organization.

All registers on the Z8PLUS-family products are fully read/writable. Hardware may write lock certain registers
or bits under some conditions. The TCTLHI register is one such example.
7/�������<�:���� � �

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
Figure 1-1. Complete Register File RAM Space

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

PA
G

E
NUM

BE
R

255

128

127

0

Control Registers

General Purpose Registers
 (GPRs)

PAGES 1 THROUGH 15
CONTAIN GENERAL
PURPOSE REGISTERS
256 THROUGH 4095
� � 7/�������<�:����

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
The Stack Pointer High register (0FEH), the interrupt mask register 2 (0F9H), and the interrupt request
register 2 (0F8H) are optional and are reserved if not implemented.

Table 1-1. Z8PLUS Core Control Registers

Hex Address Register Name Register Description Comments

0FFH STKPTR (SPL) Stack Pointer Low LSB of Stack Pointer

0FEH SPH Stack Pointer High MSB of Stack Pointer

0FDH REGPTR(RP) Register Pointer

0FCH FLAGS Flags

0FBH IMASK Interrupt Mask 1 Ints. 0 - 6

0FAH IREQ Interrupt Request 1 Ints. 0 - 6

0F9H IMASK2 Interrupt Mask 2 Ints. 7 - 14

0F8H IREQ2 Interrupt Request 2 Ints. 7 - 14

0F7H Reserved

0F6H Reserved

0F5H Reserved

0H4H Reserved

0F3H Reserved

0F2H Reserved

0F1H Reserved

0F0H Reserved
� � 7/�������<�:����

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*

ast
Registers can be accessed as either 8-bit or 16-bit registers using Direct, Indirect, or Indexed Addressing. All
general-purpose registers can be referenced or modified by any instruction that accesses an 8-bit register,
without the need for special instructions. Registers accessed as 16 bits are treated as even-odd register pairs.
In this case, the data’s Most Significant Byte (MSB) is stored in the even numbered register, while the Le
Significant Byte (LSB) goes into the next higher odd numbered register (Figure 1-2).

Table 1-2. Page 0 Register File Organization

Hex Address Range Register Description

F0 - FF Core Control Registers

E0 - EF Virtual Copy of the Current Working Register Set

D0 - DF Port Logic Control Registers

C0 -CF Timer Peripherals Control Registers

B0 - BF Reserved for Future Extensions

A0 - AF Reserved for Future Extensions

90 - 9F Reserved for Future Extensions

80 - 8F Reserved for Future Extensions

70 - 7F General Purpose Registers

60 - 6F General Purpose Registers

50 - 5F General Purpose Registers

40 - 4F General Purpose Registers

30 - 3F General Purpose Registers

20 - 2F General Purpose Registers

10 -1F General Purpose Registers

00 - 0F General Purpose Registers
� � 7/�������<�:����

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
Figure 1-2. 16-Bit Register Addressing

By using a logical instruction and a mask, individual bits within registers can be accessed for bit set, bit clear,
bit complement, or bit test operations. For example, the instruction AND R15, MASK performs a bit clear
operation. Figure 1-3 shows this example.

Figure 1-3. Accessing Individual Bits (Example)

When instructions are executed, registers are only read, not written, when defined as sources; and read and/or
written when defined as destinations. All General-Purpose Registers function as accumulators, address
pointers, index registers, stack areas, or scratch pad memory.

General-Purpose Registers

General-Purpose Registers (GPR) are undefined after the device is powered up. The registers keep their last
value after any reset, as long as the reset occurs in the VCC voltage-specified operating range. It does not keep
its last state from a VLV reset if VCC drops below 1.8V.

MSB LSB

Rn Rn+1

n = Even
Address

0 1 1 1 0 0 0 0 R15

1 1 0 1 1 1 1 1 MASK

AND R15, DFH ;Clear Bit 5 of Working Register 15

0 1 0 1 0 0 0 0 R15
� � 7/�������<�:����

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
Working Register Groups

Instructions can access 8-bit registers and register pairs (16-bit words) using either 4-, 8-, or 12-bit address
fields. Eight-bit address fields refer to the actual address of the register within the current page. For example,
Register 58H is accessed by calling upon its 8-bit address, 01011000 (58H). The lower nibble of the
Register Pointer specifies the current RAM page.

With 4-bit addressing, the register file is logically divided into 16 Working Register Groups of 16 registers
each, as shown in Table 1-3. These 16 registers are known as Working Registers. A Register Pointer (one of
the control registers, FDH) contains the base address of the active Working Register Group. The High nibble
of the Register Pointer determines the current Working Register Group.

When accessing one of the Working Registers, the 4-bit address of the Working Register is combined with
the upper four bits (High nibble) of the Register Pointer, thus forming the 8-bit actual address. Figure 1-4
illustrates this operation. Since working registers are typically specified by short format instructions, there are
fewer bytes of code needed. In addition, when processing interrupts or changing tasks, the Register Pointer
(see Figure 1-5) speeds context switching. A special Set Register Pointer (SRP) instruction sets the contents
of the Register Pointer.

Data transfer across RAM page boundaries can be accomplished via 12-bit addressing. Using certain instruc-
tion modes, data can be moved from the current page and working group into any register on the chip by spec-
ifying the absolute 12-bit address, including page. Not all family members support 12-bit addressing. See the
applicable product specification for specific information.

Table 1-3. Working Register Groups

Register Pointer (FDH)
High Nibble (Binary)

Working Register Group
(HEX) Actual Registers (HEX)

1111 F F0 - FF

1110 E E0 - EF

1101 D D0 - DF

1100 C C0 - CF

1011 B B0 - BF

1010 A A0 - AF

1001 9 90 - 9F

1000 8 80 - 8F

0111 7 70 - 7F
� � 7/�������<�:����

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
Figure 1-4. Working Register Addressing (Example)

0110 6 60 - 6F

0101 5 50 - 5F

0100 4 40 - 4F

0011 3 30 - 3F

0010 2 20 - 2F

0001 1 10 - 1F

0000 0 00 - 0F

Table 1-3. Working Register Groups (Continued)

Register Pointer (FDH)
High Nibble (Binary)

Working Register Group
(HEX) Actual Registers (HEX)

0 1 1 1 0 0 0 0

0 1 1 1 0 0 0 0

0 1 1 0 1 1 1 0

Register Pointer (FDH), = 70H

Actual Register Address (76H)

INC R6 (Instruction, Short Format)
� � 7/�������<�:����

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
Figure 1-5. Register Pointer

Precautions

Registers in the Standard Register File must be correctly used or certain conditions produce inconsistent
results.

� The watch-dog timer can only be disabled via software if the first instruction out of RESET performs this
function. During the execution of the first instruction after the Z8PLUS leaves RESET, the upper five bits of
the TCTLHI register can be written. After the first instruction, hardware does not allow the upper five bits
of this register to be written.

� Some control registers, including the port inputs and timer count registers, may be updated by hardware.
Writing these registers from software always overrides the hardware update from the same cycle, but with
unpredictable results. For example, writing into the count value register of a running timer can cause

FF

 F0

R7 R6 R5 R4 R3 R2 R1 R0

Specified Working Register Group

R253

EF
80
7F
70
6F
60
5F
50
4F
40
3F
30
2F
20
1F
10
0F

00

The lower nibble
of the register
file address,
provided by the
instruction, points
to the specified
register

The upper nibble of the register file address,
provided by the register pointer, specifies
the active working-register group.

(Register Pointer)

The lower nibble specifies the
current page of RAM.

Working Register Group 1

Working Register

Working Register Group F

Group 0

R15

R0
� � 7/�������<�:����

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
unexpected results if the hardware was in the process of decrementing the timer for the terminal count and
generating an interrupt.

� The register space from 0E0H-0EFH is special. The MCU uses these addresses to flag accesses via 4-bit
addressing mode to the current working register group. There are no physical registers at that location. Care
must be taken that the Register Pointer never points at Group E on the first page (be loaded with E0H).
This is an undefined case. Also, indirect addressing does not redirect a second time and find the working
registers. This is also an undefined case. As an example, in the code below, R0 does not find the data in
register 08. It returns garbage. R2 correctly contains a copy of register 08.

SRP #%00

LD R1, #%E8

LD R0, @R1

LD R2,%E8
� � 7/�������<�:����

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
CONTROL AND PERIPHERAL REGISTERS

Control Registers

The standard control registers govern the operation of the CPU. Any instruction which references the register
file can access these control registers. Available control registers are:

� Stack Pointer Low (SPL or STKPTR)

� Stack Pointer High (SPH)

� Register Pointer (RP or REGPTR)

� Flags (FLAGS)

� Interrupt Mask 1 (IMASK)

� Interrupt Request 1 (IREQ)

� Interrupt Mask 2 (IMASK2)

� Interrupt Request 2 (IREQ2)

A 16-bit Program Counter (PC) to determine the sequence of current program instructions. The PC is not an
addressable register.

Peripheral Registers

Peripheral registers are used to transfer data, configure the operating mode, and control the operation of the
on-chip peripherals. Any instruction that references the register file can access the peripheral registers.
Possible peripheral registers can include:

� Timer Count Value Register for Timer n

� Auto-Initialization Value Register(s) for Timer n

� Timer Control Registers (High and Low Byte)

� Watch-Dog Timer Registers (High and Low Byte)

In addition, the port registers are considered to be peripheral registers. Ports generally have at least the
following four dedicated registers which are readable and writable by software:

� Port Input Value Register

� Port Output Value Register

� Port Control Register

� Port Special Function Register
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
PROGRAM MEMORY

The program memory map is shown in Figure 1-6. The first two bytes of program memory are reserved for
the PC rollover vector. When the PC wraps around to 0000H, bytes 0000H and 0001H are executed as
instructions, enabling a user defined behavior for this occurrence. For example, a JR instruction in 0000H
and a corresponding displacement in 0001H could be defined for the PC rollover vector. The next 30 bytes
of Program Memory are reserved for the interrupt vectors. These locations contain 16-bit vectors that corre-
spond to the available interrupts. Address 0020H through the end of the populated memory (0FFFFh, 64 KB
maximum) consists of on-chip mask-programmable ROM or EPROM or Flash. The first byte of program
memory executed following a RESET is located at 0020H. See the product data sheet for the exact program,
data, register memory size, and address range available.

The internal program memory may be one-time programmable (OTP) or mask programmable dependent on
the specific device. A ROM protect feature prevents dumping of the ROM contents. The ROM Protect option
is mask-programmable and is selected by the customer when the ROM code is submitted. For programmable
memory devices, the ROM Protect option is an OTP programming option.
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
Figure 1-6. Program Memory Map

IRQ0

IRQ1

IRQ2

IRQ3

IRQ4

IRQ5

Hex

FFFF

00D

00C

00B

00A

009

008

007

006

005

004

003

002

001

000

00E

01F

020

021

Byte of Instruction
Executed After
RESET

IRQ6 - IRQ14

On-chip ROM or

Decimal

Address

65535

 33

 32

 31

 14

 13

 12

 11

 10

 9

 8

 7

 6

 5

 4

 3
 2

 1

 0

IRQ0

IRQ1

IRQ2

IRQ3

IRQ4

IRQ5

PC Rollover Vector (JR Instruction)

PC Rollover Vector (Displacement)

Interrupt Vector (Lower Byte)

Interrupt Vector (Upper Byte)

User Code Space

(Available for
Devices With Fewer
Than 15 interrupts.)

EPROM Program Memory

Location of First
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
STACK

The stack always resides in the general purpose registers of the on-chip register file RAM. The stack pointer
register (SP) contains an address into the standard register file that is the address of the operand that is
currently on the top of the stack. The register 0FFH is the 8-bit stack pointer (SP), that is used for all stack
operations (see Figure 1-7).

Some devices prepend the lower nibble of register 0FEH to form a 12-bit stack pointer. Otherwise, register
0FEH is reserved.

Figure 1-7. Stack Pointer

The stack address is decremented prior to a PUSH operation and incremented after a POP operation. The stack
address always points to the data stored on the top of the stack. The stack is a return stack for CALL instruc-
tions and interrupts, as well as a data stack.

During a CALL instruction, the contents of the Program Counter are saved on the stack. The PC is restored
during a RET instruction. Interrupts cause the contents of the PC and FLAGS registers to be saved on the
stack. The IRET instruction restores them (see Figure 1-8).

An overflow or underflow can occur when the stack address is incremented or decremented during normal
stack operations. The programmer must prevent this occurrence or unpredictable operation may result. The
stack must not encroach into the control registers.

Stack Address

0FFH0FEH
� �� 7/�������<�:����

<�2.75�7UGT U�/CPWCN
#FFTGUU�5RCEG =L/2*
Figure 1-8. Stack Operations

PCL

 Top of Stack

Stack Contents

PCH

PCL

PCH

FLAGS

After an
Interrupt Cycle

Stack Contents
After a Call
Instruction

 Top of Stack

Prior value of
Stack Pointer

Prior value of
Stack Pointer
� �� 7/�������<�:����

	Chapter 1 Address Space
	Introduction
	Register File Space
	General-Purpose Registers
	Working Register Groups
	Precautions

	Control and Peripheral Registers
	Control Registers
	Peripheral Registers

	Program Memory
	Stack

