
White paper: Unlimited code and data support for the ZiLOG®
Z80 & Z180 family of microprocessors.

Softools’ development tools provide software engineers and programmers
innovative and seemless code and data support for program development.
These tools, along with ZiLOG's high performance Z180 processors, extend
the life of these 8-bit processors.

ZiLOG's Z180 Family Peripherals and Processor Performance a Platform
for Users to Innovate

The Z180 is ZiLOG's second generation Z80 based processor family. Building on its world
famous Z80, ZiLOG's Z180 offers several feature and improvement that have made it an
attractive platform for those who require higher CPU performance as well as peripheral
integration. The Z180 CPU executes Z80 more efficiently, resulting in faster code throughput
compared to a Z80 based system operating at the same speed. In addition, the Z180 family
integrate a number of peripherals including high speed communication ports. One of the more
used peripherals, however, is the Memory Management Unit, or MMU. This peripheral allow the
Z180 family to address up to 1 Mbyte of code through a method called "code banking" or "memory
paging"

Introduction to Code Banking

Code banking, or memory paging, is not a new concept and has been used for decades in many
hardware and software systems. Hardware systems typically switch ROM or RAM pages or
regions to map in various parts of code or data normally inaccessible. Software systems often
paged memory by copying parts of program or data from one area or medium to a common
paging area. This
method is very
prominent in the
Windows®
operating system.

In 8-bit
microcomputer
designs, external
hardware is often
used to bank switch
various RAM and
ROM regions into a
fixed memory
address. This
allows code or data
to be more quickly
accessed by the
CPU and to extend
the effective
addressing space
of the
microprocessor.
This common address space is usually fixed and referenced using logical addresses and is often
called the page or bank window. Many ZiLOG® Z80-based systems have been doing hardware
paging or banking for over 20 years.

68

Physical

Logical

common 1

bank

common 0

FFFFh

D000h

4000h

0000h

common 1

bank

common 0

CBR: F0h

BBR: E0h

“ADD F0000hex”

“ADD E0000hex”

FFFFFh

FD000h

E4000h

ECFFFh

00000h

03FFFh

ZiLOG’s Z180-Class 8-bit Processors
Provides Addressing to 1MByte

n CBR: Specifies the base address used to generate
the physical address for Common Area 1 Access.

n BBR: Specifies the base address used to generate
the physical address for Bank Area Access

The ZiLOG® Z180 family of microprocessors includes a MMU (Memory Management Unit) which
provides on-chip hardware memory mapping to map from 16-bit logical addresses to 20- or 23-bit
physical addresses. The MMU allows for the programming of up to three different banking
windows, of which two can be mapped anywhere in the 1 megabyte address space with 4 kilobyte
granularity (1kilobyte in extended MMU mode).

Design Considerations with Banking

While banking offers expanded addressing, it also requires special considerations Paramount to
these consideration is managing the dynamic paging from the window.. This issue is magnified
because programs are getting larger, older, and therefore more complex. The programming shift
in the past 5 to 10 years en masse from assembly language to C language has made banked
systems even more cumbersome, as some Z180 compiler vendors do not support seemless
MMU integration..

Many schemes have been developed over the years. Typical ones have included:

⇒ Using hand built tables of addresses. All references throughout a program to a function
in another bank had to be replaced by the name in the table. Sometimes clever use of
assembler or C macros could be used to semi-automate the process but it is still a
chore. Each banked function needs a handler to change the bank and to switch to and
from the address in the bank. Often overlaid segments were used to get the logical
address in the bank set to the right address. Every function had to be manually handled.

⇒ Using a special function that takes one or more arguments. Then, this function could be
used to switch banks and execute the “real” function. As above, the bank number had to
be known and used with the call. Furthermore, if a called function needed parameters of
its own, they had to somehow be passed, but this often could not be done in registers.
For C, this was less of a problem as often times the stack is used for arguments. Source
code changes were required.

Perhaps the most challenging aspect of the MMU is maintaining a crisp handoff to the next
generation engineers. While the original engineer may have completely understood the MMU, the
design philosophy may not have been rigorously documented The main problems, especially for
Z180 bank switching, are as follows: New engineers faced the following challenges:

⇒ . Some knowledge of Z180 assembly language may be required.

⇒ The user had to maintain and manage what modules were in each bank. As banks
became full, the tables or mechanisms described above had to be updated to reflect the
change. Miss one function or forget a table entry and that function call would crash the
program.

⇒ When adding to a new program, this maintenance issue was often times a minor one.
Adding to the tables and watching for a full bank was easy to do on the fly. But go in a
year later and add to a function that overfills a bank and the ripple effect could cost more
time than the original change. Delete code, and there is wasted code at the end of the
bank unless the ripple effect again was used to slide up modules to fill the vacancy.

⇒ Few (if any) tools today support getting physical address of symbols or segments. Add
to that the limitation that most tools are often unable to do adequate link-time math to
build tables with calculated values. So runtime code (ROM space) and CPU time was
often used to calculate MMU values and sometimes even table addresses. Those
manual MMU calculations were also error prone. Make a mistake for a rarely used
function and the final program is one that also crashed, but rarely as well.

Softools, Inc. releases new Z180 specific tools

The scenario for banked program development was altered dramatically in 1990. Softools, Inc.,
a tool maker specialized and dedicated to supporting the Z80 and Z180 family of processors,

released the SASM180 Advanced Assembler and Linker package. The following year, Softools
released the SC180 C compiler. What set them apart from other development tool packages
then, and still does today, is that all of the problems above have been solved by Softools’
Advanced Linker SLINK. This is not only the most powerful, feature-rich linker for the Z80 and
Z180 families, but for any microprocessor tool package available.

Unlimited code support on the Z180

Softools’ development tools allow unlimited code support on hardware banked Z80 systems and
Z180 based systems using the MMU. This is because the problems outlined above are
seamlessly solved for Z80 and Z180 banked programs for several important reasons. These
include:

⇒ SLINK will figure out how much banked and non-banked code and data are in the
system and will automatically set the Z180 MMU for the proper three window
configuration. You need to know nothing about the MMU to make a banked switched
program. You simply tell SLINK which modules are non-banked and which ones are
banked (and this can be done at link-time, not by going to the source code to mark
functions or segments manually as banked). You tell it where RAM starts physically in
the target and the program is built.

⇒ SLINK will automatically flow from one bank to the next as each bank is filled. There is
NO maintenance for the resulting bank size or the modules in each bank. This is true
regardless of how the functions are called (i.e., direct call, through a table, array, or
pointer). If you add or delete code, SLINK will slide all modules up or down to fill each
bank, adjusting the MMU if necessary.

⇒ SLINK automatically builds the bank table which switch banks at runtime. It also
redirects all banked calls to the table -- but only when it knows it must do so. A call from
one module to another where each winds up in the same bank has no additional
overhead! The runtime also is optimized to not switch banks if it determines the new
bank is the same as the current one.

⇒ A program that is not banked switched can be made bank switched simply be relinking
and adding a 6-byte initialization sequence at program startup. There are NO source
code changes to the actual program.

⇒ Softools’ tools are the only tools to automatically bank switch a program, whether it be
100% assembly code, 100% C code, or a mix of the two. No registers are used and
pointers to functions and address tables containing banked function addresses continue
to work. There are really no limitations (for programs designed by today’s standards
anyway).

⇒ Any expression and any operator that can be used at assembly time can be evaluated
and resolved at link time if needed. This means complete address and MMU
calculations can be done at link-time. SLINK even allows accessing the logical and
physical address of any symbol or segment name. This allows for incredibly complex
calculations to be resolved at link time -- but with SLINK’s MMU and banking support this
is often not required.

⇒ Bonus! There is a unique feature of SLINK that surpass all other linkers that attempt to
handle bank switching. SLINK can optionally take all of the modules in the banked area
and best fill each bank before going to the next bank. System banks can be filled such
that only a handful of bytes is unused and wasted at the end of each bank. Large
programs that normally would waste 20 to 30k of ROM using user-specified ordering free
up this memory using this feature.

Softools has seen the results

Softools’ has several customers currently running 200k, 300k, and 400+k Z80 and Z180
programs. Having unlimited code support allows you to add code and features to your product,
allowing Softools’ tools to handle the maintenance chores of building the final program.

Unlimited data support on the Z180

The Softools WinIDE development environment includes the latest version of the SC180 C
Control Cross C Compiler. This compiler is the first and only C compiler for the Z180 family that
supports far pointers and far data. This allows C programs to have unlimited access to the 1
megabyte address space for data access. This does not impact banked programs in any way.

Far pointers are normally 24-bit addresses (stored in 32-bit locations), but a compiler option can
allow storing and using all 32-bits. This can be used for encoding additional system memory in
the upper bits. far pointers and data are not designed for general use or for computationally
intensive program code using them. They can be used for tables, menus, buffers, etc., which are
stored outside the 64k logical address space, freeing this space for better purposes. A design
goal of Softools was to store far pointers as real physical addresses. For example:

far char *farPointer = (far char *) 0x20000UL;

sets farPointer to physical address 0x20000. Referencing farPointer like *farPointer = 1; stores a
1 at address 20000h. SC180 automatically handles converting logical (near) pointers to far
pointers. Far pointers can be used like near pointers (of course with the added overhead of
accessing 32-bits instead of 16) and far arrays and far pointers to structures are also possible.
Traditional techniques of manual MMU mapping to access extra data is eliminated using far
pointers and far data.

Conclusion

The use of the Z80 and Z180 microprocessors today has real potential for systems that require
large programs. Having the tools to support unlimited programs sizes and to handle data outside
the logical address space is paramount to successfully using these microprocessors for larger
more complex programs. Softools development tools achieve this, therefore allowing continued
use of these microprocessors for a much longer time than was possible without these tools.

By: William Auerbach, President, Softools, Inc.

Danny Chi, Business Line Manager, Embedded MPU, ZiLOG

Copyright © 1999, Softools, Inc. Duplication and publication rights are granted.

