
6-53

Z182 PROGRAMMING THE MIMIC
APPLICATION  NOTEZilog

AN971800500

 Z182 PROGRAMMING THE MIMIC
 AUTOECHO ECHOZ182.S™ SAMPLE CODE

In a conventional Internal Modem design, a 16550 UART is required for the Modem to communicate
with the PC. The Z182 took that 16550 UART register set and using Zilog's unique Superintegration™

technology, combined it with the widely used Z8S180 core to make an intelligent peripheral controller
ideally suited for PC Modems.

INTRODUCTION

controller with the PC Bus. This is shown in Figure 1 and
labeled as the conventional internal modem. A better idea
would be to integrate the PC standard UART register set
into a modem controller. Zilog addressed this need by
superintegrating the 16550 Mimic into the Z182.

The Z182 design shown in Figure 1 demonstrates how the
Z182 can be used to lower chip count, which also means
lower costs and higher reliability. The 16550 Mimic is not
a UART, but transfers byte data (as opposed to serial data)
between the PC and Static Z180. Therefore, much higher
performance can be achieved using the Z182’s Mimic.

The Z80182 is a general-purpose datacommunications
controller for internal, external, PCMCIA, and wireless
modem/fax. The 16550 Mimic Core allows the use of the
Z80182 in internal PC applications, with direct access to
the PC XT/AT bus.

The 16450/550 UART is known as the PC Standard Serial
Communication Device. PC communication software is
written to communicate to a 16450/550 UART directly
connected to the PC bus. In order to maintain compatibility
with PC communication software, modem designers must
implement a 16450/550 UART to interface the modem

Conventional Internal Modem

PC
Bus

Z182 Internal Modem

U
S
A
R
T

Modem
Controller Data Pump AFE

U
S
A
R
T

External
World

PC
Bus 16550

MIMIC

Z8S180

24 I/O

ESCC
Ch. A

Data Pump AFE

Z182

Figure 1.  Modem Configurations

Barbara E Lau
AN006801-0201 



6-54

Z182 PROGRAMMING THE MIMIC
APPLICATION  NOTEZilog

AN971800500

PURPOSE

In order for the Z182’s Mimic to function properly in a
modem application, it must be programmed properly. The
Mimic is programmed by both the PC as well as the internal
Static Z180 core of the Z182. There are many varieties of
PC communication software for programming and manag-
ing the Mimic from the PC side. Therefore, a modem
designer need not worry about programming the Mimic
from the PC side.

Because the Mimic is an interface between the PC and the
Static Z180 modem controller, the Mimic must also be
programmed and managed by the Static Z180. This appli-
cation note was written to address the Mimic programming
requirements of the Static Z180. It is advised that the  user
become familiar with the Z182 device by reviewing the
Z80182 Preliminary Product Specification in Section 3 of
this databook. A complete listing and explanation of the
Mimic registers can be found in that document. This
Application Note is meant to be a supplement to the
Product Specification.

The basic task of the Mimic is to transfer data between the
Modem Controller and the PC Bus. In order to satisfy this
basic task, a programming example is required that exer-
cises the task of transferring data with the use of Z182’s
Mimic. The ECHO182 code was developed to serve as a
no-frills example of how to program the Mimic.

The ECHO182 program is merely an autoecho driver for
the Z182 Mimic Cell. It’s purpose is to take data transmitted
from the PC and “echo” it back to the PC.

Figure 2 is an illustration of the ECHO182 driver function.
A user would send data by either pressing keys on the
keyboard or initiating a file transfer. The transmission of
this data is managed by the PC Communication software.
The PC Communication software routes that data to the
assigned Com Port connected to the PC Bus. The Z182’s
Mimic interface retrieves that data through its Transmit
Holding FIFO and allows it to be handled by the Static Z180
controller. The ECHO182 driver would then take that data
and store it in buffer RAM.

As data is being stored in RAM, the Static Z180 controller
will also take that data and “ECHO” it back to the PC by
means of the Mimic’s Receive Buffer FIFO. The PC Com-
munication software will then take the data echoed by the
Z182 and display it on the computer monitor.

The overall effect of the driver is demonstrated when a key
is pressed or file is transferred. What is transmitted will be
echoed back and displayed on the monitor. Data that is
received from the Z182 through the Mimic Receive Buffer
FIFO is displayed on the computer monitor by the PC
communication software. Additionally, a terminal can be
connected to the Z182’s ASCI0 UART to display data that
the PC transmits to the Mimic Transmit Holding FIFO.

Barbara E Lau
AN006801-0201



6-55

Z182 PROGRAMMING THE MIMIC
APPLICATION  NOTEZilog

AN971800500

PC
Communication

Software

Input

Output

MIMIC THR

MIMIC RBR

S180
Core

ASCI
0

UART

CLR = / *
7 8 9 –

4 5 6

1 2 3

+

0 .

E
N

T
E

R

Keyboard

File

Monitor

RAM

TerminalZ182

Figure 2.  Echo Z182 Autoecho Code

Barbara E Lau
AN006801-0201



6-56

Z182 PROGRAMMING THE MIMIC
APPLICATION  NOTEZilog

AN971800500

ANALYSIS OF ECHO182 CODE

The complete listing of ECHO182 source code can be
found in Appendix A of this Application Note. It is highly
recommended that a copy of this code is made and kept
handy throughout the study of this document. References
to the ECHO182 code will be made frequently.

The first part of any code deals with the initialization of the
device. Figures 3a and 3b display a flowchart of the Z182’s
initialization sequence. The first block involves initialization
of the stack area as well as the location of the interrupt
vector table.

The next section of code serves to initialize Static Z180
MPU registers, Z180 peripherals, ASCI0 UART (used to
display transmitted data to terminal), as well as ESCC
Channel B. Note that the ECHO182 code uses the OTIM
command in a loop to do a block initialization of the Z182.
An initialization table is then labelled as INITTAB which
features a simple format of register then offset. The end of
the table is denoted by 0ffH in the register field (the Z182
has no register addressed as 0ffh, so using 0ffh as end of
table marker is fine).

Within the initialization sequence, the SYSCR (System
Configuration Register, address = xxefH) is programmed
such that Mimic pins are multiplexed over ESCC Channel
B and Z180 peripheral pins. The Mimic pins are required
to interface to the PC Bus. The Interrupt Daisy chain is set
such that the Mimic has higher priority interrupts than the
ESCC interrupts. Also, ASCI Channel 0 is multiplexed over
Port B bit I/O pins (ASCI0 UART is used for monitoring data
transmitted from PC to Mimic’s Transmit Holding FIFO).

The next functional block of Figure 3a. flowchart shows
initialization of ESCC Ch. B. The Mimic Timers need to have
a clock source (more explanation on the timers later). The
Mimic Timers get its clock pulse from the /TRxCB pin of the
Z182. We can program the ESCC Ch. B Baud Rate Gen-
erator to put a periodic pulse on the /TRxCB pin. Since the
Mimic timers count with an 8-bit constant and the ESCC

provides baud rate generation programmability of 16 bits,
the programmer has an access to a total of 24 bits to
control the time constants of Mimic timers.

During the initialization of ESCC Ch. B, we set the Baud
Rate Generator time constant to 01DEh. The output of the
Baud Rate Generator is routed to the /TRxCB pin so that it
can be used by the Mimic Timers. The formula for ESCC
Baud rate generation is as follows:

Time Constant =  Clock Frequency
- - - - - - - - - - - - - -  -2
2X (Desired Rate)

Using a 18.432 MHz XTAL in divide-by-two mode, the
clock frequency is 9.216 MHz. The time constant of 01DEh
is 478 in decimal. Using the above formula, you get roughly
9.6 kHz pulse rate. The time constant for this example was
picked randomly for 9.6 kHz. In a modem application, the
time constant can be picked such that the desired rate
represents the actual baud rate.

In that case, the /TRxCB pin will pulse periodically for every
bit time for 9600 baud data transmission. Once we have
initialized ESCC Ch. B’s Baud Rate Generator, we can
enable it. Note that the Baud Rate Generator output cannot
be observed since it is internally multiplexed out and
replaced with HA0 input pin of the Mimic.

Once the Static Z180, Z180 peripherals, and ESCC Ch. B,
are initialized, the code proceeds to send a start-up
message to ASCI0 UART. The start up message will be
displayed on a terminal connected to ASCI0 given that the
terminal configuration matches the ASCI0 transmission
rate. (ASCI is programmed for 9600 baud in this code.) The
message is useful in indicating that the Z182 general
initialization was successful. This concludes the general
Z180/ESCC initialization.

Barbara E Lau
AN006801-0201



6-57

Z182 PROGRAMMING THE MIMIC
APPLICATION  NOTEZilog

AN971800500

-  Enable RBR Timeout Timer
-  Set Tx FIFO Interrupt Level = 1
-  Setup RAM Data Buffer

Disable Mimic Timers
-  Set Z180 Mode 2 Interrupts
-  Set PC Out 2 Mode Interrupts

Send Start-Up Message
Through UART, ASCI 0

Enable Baud Rate Generator

Initialize ESCC Ch. B
-  Baud Rate Generator
-  Output On /TR X CB Pin

Initialize Z180
-  Peripherals
-  MPU
-  UART

Initialize Z180
-  Stack
-  Interrupt Table

Echo Z182

Program Start

Z180/ESCC Initialization

Mimic Initialization

Setup
-  Higher Nibble Of Interrupt Vector
-  Timeout Timer Constants
-  Serial Emulation Timer Constants

Mimic Initialization
(Continued)

Figure 3a.  Echo Z182 Initialization Flowchart

Barbara E Lau
AN006801-0201



6-58

Z182 PROGRAMMING THE MIMIC
APPLICATION  NOTEZilog

AN971800500

ANALYSIS OF ECHO182 CODE (Continued)

Enable THR Interrupts
Disable RBR Interrupts

Set TEMT Bit of LSR

Echo Z182

Mimic Initialization
(Continued)

Enable Emulator Timers

Reset Highest IUS

EI Command Enable Interrupts

Waiting For Interrupts

Infinite Loop

Figure 3b.  Echo Z182 Initialization Flowchart

Barbara E Lau
AN006801-0201



6-59

Z182 PROGRAMMING THE MIMIC
APPLICATION  NOTEZilog

AN971800500

INITIALIZING THE MIMIC

The next functional blocks of Figures 3a. and 3b. describe
the initialization of the Mimic core. The first step is to
program the MMCR (Mimic Master Control Register, xxFFH).
This register sets DMA transfers, Mimic Timers, PC Host
Interrupts and Mimic/Static Z180 interrupt mode. Within
modem applications, data transfers with the Mimic are
generally interrupt driven, so DMAs are disabled. Errors
can result when using the DMAs with the Mimic. Please
consult the Z80182 Customer Procurement Specification
errata prior to utilizing DMAs with Mimic.

The MMCR also programs the way interrupts are handled.
The VIS (vector includes status) bit should be programed
to the same interrupt mode as ESCC Ch. A interrupts. It is
strongly suggested that Mode 2 be used since this mode
translates to higher interrupt handling performance.

The PC Host interrupts can be fully driven in Normal Mode,
wired AND, or OUT 2 Mode. PC Communication software
usually programs the OUT 2 bit to enable PC Modem
Interrupts so it is suggested that OUT 2 mode is used for
modem designs.

Note that the Mimic timers are disabled here. Whenever
one wishes to modify Mimic timer constants, the timers
should be disabled. In other words, avoid changing Mimic
timer constants on the fly (while the timers are operating).

The code then proceeds to program the IVEC Register
(xxFCH) of the Mimic. In Mode 2 type interrupts, we can
only modify the upper nibble of this register. The lower
nibble is controlled by the type of interrupt that occurs. The
contents of the IVEC and interrupt status determine what
interrupt vector is exported during an interrupt acknowl-
edge cycle.

By writing 80h to the IUSIP register (xxFEH), we reset the
highest interrupt under service. This must be done once
during initialization and at the end of each Mimic
Interrupt Service Routine.  Upon start-up, the RBR inter-
rupt will be pending and we must reset the highest IUS to
allow other interrupts to occur. If this is not done, further
interrupts will be prevented from occurring.

INITIALIZING MIMIC TIMERS

The Mimic has four timers;  Receive Timout Timer, Transmit
Timout Timer, Transmitter Serial Emulation Timer, and
Receiver Serial Emulation Timer. These timers are basi-
cally counters that count the number of pulses that occur
on the /TRxCB. (Recall that we programmed the ESCC Ch.
B Baud Rate Generator to output pulses on /TRxCB.) Each
of the timers have a register that holds a timer constant.

The Receive Timeout Timer Constant contains an 8-bit
constant for emulation of the 16550’s four character timeout
feature. The 16550 feature will cause a timeout if no FIFO
transaction occurs within four character times of a byte
entering the FIFO. Therefore, we should emulate four
character times. If we assume a character is 10 bits in
length (including start, stop, parity bits) we can say four
character times is approximately 40 bit times. If ESCC Ch.
B is programmed such that /TRxCB pulses at one bit time
intervals, then we need only program the Timer constant to
be 40 decimal (28h). The same should be done for the
Transmitter Timeout Timer Constant.

In the ECHO182 example, we set the Timeout feature to be
28h. The only proviso here is that the Timout Timer Con-
stants should be greater than the Transmitter Time Con-
stants. Otherwise, you run the possibility of having a RBR
or THR interrupt prior to the Data Ready/Available bit being
set. The next set of timers are the Receive and Transmit
Serial Emulation Timers. Since the Mimic transfers data in

bytes (as opposed to serial bits with real 16550), data
transfers between the Static Z180 and PC can occur at
very high rates. The Serial Emulation Timers have been
added to alleviate any software/hardware problems that
higher data throughput can impose.

A true 16550 will add a delay due to shifting of serial data.
The serial emulation timers can be used to slow down the
data transfer just as if the Mimic had to shift data in and out.
For example, if the modem is configured for 10 bits per
character (with start bit and stop bit), we can set the serial
emulation timers to emulate the shifting of 10 bits. If the
ESCC Ch. B /TRxCB output pulses at one bit time, we can
emulate the shifting of 10 bits by putting 10 decimal (0ah)
in the counter register. If the timer constant is made longer
than this, the data transfer efficiency will suffer. The Re-
ceive and Transmit timers are set to 0Ah in ECHO182. This
causes the data transfer rate to drop down to 960 bytes per
second (9.6 kHz TRxCB pulse/10 bit time emulation).

One may wish to make use of the advantages of parallel
data transfer and make the serial emulation timer constant
smaller than what is suggested. This is fine, but care
should be taken such that the data throughput is manage-
able by PC communication software and hardware. Opti-
mization of this type can only be accomplished through
trial and error.

Barbara E Lau
AN006801-0201



6-60

Z182 PROGRAMMING THE MIMIC
APPLICATION  NOTEZilog

AN971800500

ENABLING FIFOS, TIMERS, AND INTERRUPTS

The next functional blocks of the flowchart of Figure 3a.
works to enable the appropriate Mimic FIFOs, timers, and
interrupts. The FIFO Status and Control Register (address
xxECH) enable the Mimic transmit/receive timeouts as well
as setting the THR FIFO Interrupt trigger level.

It is strongly suggested that THR XMIT Timeout is disabled
and THR XMIT trigger level is set for 1 byte. Ideally, we
would want to utilize the FIFO features by using a greater
trigger level and enabling the timeouts. Doing this would
allow less interrupts and more efficiency/performance by
the Static Z180 core.

Unfortunately, PC communication software does not allow
for use of the THR FIFO features.

Most, if not all, PC communication software transmits data
as follows:

■ Sends 1 byte to THR.

■ Checks the THRE empty bit and polls until transmit
holding register is empty.

■ Once the THRE bit is logic 1, then another byte can be
transferred. (This also applies to 16550 compatible
communication software.)

So, if the PC writes 1 byte of data in the THR and the Mimic
THR interrupt level is set at four, the Static Z180 will never
read the data in the THR FIFO until there are four bytes. The
PC will not write any more data to the THR the FIFO is
empty. The Mimic will then appear to be in a locked state
indefinitely, since the FIFO will never be empty nor reach
four bytes. To avoid this problem, a THR level of 1 with
no timeout is recommended for modem applications.

Another precaution relating to PC communication software
involves the polling of the TEMT bit. This bit of the LSR
signifies that the transmitter has completed serial shifting
of all data in the THR FIFO. PC communication software will
poll this bit after sending a block of data during a file
transfer. If this bit is not set, the PC software will not send
any more data until TEMT is set. The 16550/450 will also
reset this bit when data is loaded into the THR FIFO.
Therefore, to maintain a file data transfer, one should set
the TEMT bit when all data has been read from the THR
FIFO. In the ECHO182 example, we force the TEMT bit in
the Transmit Interrupt Service Routines.

Earlier in the code, we disabled the Mimic timers. The
Mimic timers must be disabled, prior to any modifica-
tion of timer constants.  Since we have already pro-
grammed the timer constants, we can now enable them.

Also, Mode 2 vectored interrupts are chosen on the Static
Z180 side, as well as OUT 2 Control Mode interrupts on the
PC side. The PC will then program Mimic’s OUT 2 bit to
function as a Mimic-PC Interrupt enable.

Finally, we enable the Mimic Interrupts. This is accom-
plished by programming of the IE register (address xxFDH).
MIE (Master Interrupt Enable) is set as well as setting the
THR IRQ enable. Since the example deals with echoing
data back, we must wait for the PC to transmit data to echo.
Therefore, we only need to enable the THR interrupt which
will cause a static Z180 interrupt when the PC writes one
byte (remember we set the trigger level to one byte) to the
THR FIFO. Do not enable RBR Interrupts, otherwise
RBR Interrupts will occur indefinitely until data is put
into RBR.

In a modem application, FCR, DLM, DLL, LCR, MRC
interrupts are enabled to flag the Static Z180 whenever the
PC wants to change these values (baud rate, bits/char.,
parity, stop bits, etc.). The Z180 can then poll these
registers and change the ESCC programming to match
what serial link characteristics are requested by the PC
communication software. Since the ECHO182 is not con-
nected to any serial links, the interrupts are disabled and
DLM, DLL, LCR, and MCR registers are ignored.

In the Z80182, a race condition exists that causes errors to
occur. Although infrequent, the Interrupt vector is modified
improperly for FCR, DLM, DLL, LCR, and MCR Interrupts.
Instead of the corresponding modified vector, bits 1, 2,
and 3 of the interrupt vector are forced to 000b. The
workaround is to provide an interrupt service routine for the
occasion when bits 1, 2 and 3 of the interrupt vector is 000b
(NO IRQ vector of Mimic).

In the ECHO182 program, the interrupt service routine for
NO IRQ would serve only to reset the highest interrupt
under service, allowing other interrupts to occur. The
interrupt service routine is labelled UKNIRQ. It’s address
is placed in the first table entry of Mimic’s interrupt vector
table. In a modem application, the NO IRQ interrupt
service routine should poll DLM, DLL, LCR, and MCR
registers and modify ESCC as if all of these registers were
modified. The interrupt service routine should always
reset the highest IUS of the Mimic at the end of every
service routine corresponding to a Mimic interrupt as
well as after any Mimic initialization.

Now that Mimic initialization is completed, we can enable
the Static Z180 interrupts by using the EI command. The
ECHO182 will go into an infinite loop, jumping out to serve
interrupts and jumping back in when done.

Barbara E Lau
AN006801-0201



6-61

Z182 PROGRAMMING THE MIMIC
APPLICATION  NOTEZilog

AN971800500

INTERRUPT SERVICE ROUTINES

The ECHO182 code contains three interrupt service rou-
tines; FIFOTHR, RBRIRQ, and UKNIRQ. In the previous
section, the UKNIRQ was discussed and is used as a
workaround if bits 1, 2, and 3 of the Mimic interrupt vector
are returned as being 000b (NO IRQ vector). RBRIRQ and
FIFOTHR relate to the transfer of data between the PC and
Mimic.

FIFOTHR - Transmit Holding Register Interrupt
When the Transmit Holding Register of the Mimic is empty,
it generates an interrupt to the PC given that the interrupt
is enabled. The Mimic interrupts the PC to request for data

to be transmitted to the external world. The PC will then
satisfy this by writing data to the Mimic’s THR register. The
management of PC interaction with Mimic is handled by
PC communication software and is not discussed in this
Application Note.

When the Mimic THR register contains data it will generate
an interrupt to the Static Z180. The FIFOTHR interrupt
service routine flowchart is shown in Figure 4. FIFOTHR
transfers all data in the THR FIFO to the RAM Buffer.
Whenever the PC writes data to Mimic’s THR FIFO, a THR
interrupt is generated to the Static Z180.

Read Data From THR

FIFO Transfers All Data In The
THR FIFO To The RAM Buffer

FIFO THR

Write Data To RAM Buffer

Transmit Data Through ASCI0 UART

THR FIFO
Empty ?

No

Yes

Set TEMT Bit In LSR

Enable RBR And THR Interrupts

Reset Highest IUS

Return

Figure 4.  FIFOTHR Interrupt Service Routine

Barbara E Lau
AN006801-0201



6-62

Z182 PROGRAMMING THE MIMIC
APPLICATION  NOTEZilog

AN971800500

INTERRUPT SERVICE ROUTINES (Continued)

The first functional blocks of the FIFOTHR Interrupt Service
Routine causes the Static Z180 to read data from the
Mimic’s THR register. This data is then stored in the RAM
buffer area. The data retrieved from the Mimic’s THR
register is also transmitted out of ASCI0 UART. If an
optional Terminal is connected to the ASCI0, the terminal
displays the data that the PC Communication software is
transmitting to the THR FIFO.

The Static Z180 then polls the THRE bit in the LSR register
of the Mimic to determine if there is any data left in the THR
FIFO. If the Transmit Holding Register Empty bit is logic
zero, then there must still be data in the THR FIFO.

If the THR FIFO is not empty , the code will read another
byte from the Mimic’s THR buffer and store that data in the
next location of the RAM buffer. The process of reading the
THR buffer and storing in RAM will continue until the THR
FIFO is empty.

If THR FIFO is empty , the code will discontinue any further
loading of the RAM buffer. The TEMT bit will be asserted to
assure that PC communication software is allowed to
transmit additional frames of data. If TEMT is not set, the PC
communication software will wait for the Transmit Empty bit
is set before transmitting additional data.

Next, RBR and THR interrupts are enabled. When there is
no data in RAM buffer, we disable the RBR interrupt from
retrieving any data from the RAM buffer. Since the FIFOTHR
service routine just placed data in the RAM buffer, we can
enable the RBR interrupt so that the data can be echoed
back to the PC. Remember that all Mimic interrupt service
routines require a Reset Highest IUS prior to returning from
the interrupt.

The FIFOTHR interrupt service routine can read all the data
contained in the THR FIFO. If the THR trigger level is set to
one, there will only be one byte of data in the THR FIFO for
each interrupt. Therefore, the THR interrupt need only
transfer a SINGLE byte from the THR to RAM buffer. Figure
5 shows the flowchart for THRIRQ interrupt service routine.
This service routine will only transfer one byte of data out
of the THR into the RAM buffer. Note that it is very similar
to the FIFOTHR interrupt service routine except that there
is no facility to continue data transfer until THR FIFO is
empty.

The code has both FIFOTHR and THRIRQ interrupt service
routines. If you plan to utilize a THR interrupt trigger level
other than 1, FIFOTHR is required for the THR interrupt. If
you set the THR interrupt trigger level to 1 byte, THRIRQ of
FIFOTHR can be used.  In the ECHO182 example, FIFOTHR
is used for THR interrupts and THRIRQ is used for THR
timeout interrupts (although, THR timeout interrupt is dis-
abled, THRIRQ was left in for example purposes).

Barbara E Lau
AN006801-0201



6-63

Z182 PROGRAMMING THE MIMIC
APPLICATION  NOTEZilog

AN971800500

Read Data From THR

THRIRQ Transfers One Byte Of Data From
The THR Register To The RAM Buffer

THRIRQ

Write Data To RAM Buffer

Transmit Data Through ASCI0 UART

Set TEMT Bit In LSR

Enable RBR And THR Interrupts

Reset Highest IUS

Return

Figure 5.  THRIRQ Interrupt Service Flowchart

Barbara E Lau
AN006801-0201



6-64

Z182 PROGRAMMING THE MIMIC
APPLICATION  NOTEZilog

AN971800500

RBRIRQ - Receive Buffer Register Interrupt
The RBRIRQ interrupt service routine functions to transfer
data from the RAM buffer to the RBR register of the Mimic.
The RBR interrupt asks the Static Z180 core to get data
from the external world so that it can give that data to the
PC. Whenever the Mimic RBR FIFO is empty, it will gener-
ate an interrupt when enabled. As a caution, one should be
careful to choose the right times to enable this interrupt
otherwise it will cause interrupts indefinitely when there is
nothing in the RBR FIFO. In the ECHO182, the RBR
interrupt is enabled when data is transmitted by the PC to
the Mimic. The RBR interrupt is disabled when contents of
RAM buffer have been completely transferred to the RBR
FIFO.

A flowchart of the RBRIRQ interrupt service routine is
shown in Figure 6. The first step of the Interrupt service
routine is to evaluate if there is any data in the RAM buffer
to echo back to the PC. This is done by simple checking of
two RAM buffer pointers.

If there is data in the RAM buffer , the Static Z180 will
transfer one byte from the RAM buffer to the RBR FIFO of
the Mimic. Depending on the RBR interrupt level selected
by the PC communication software, an interrupt to the PC
will be generated such that the PC can read the data in the
RBR. As a final step, Reset the Highest IUS  of the Mimic
prior to returning from the interrupt.

If there is no data in the RAM buffer , the RBR interrupts
are disabled. Since there is no more data to transfer in the
RAM buffer, the RBR interrupts should be stopped to
prevent any more data being transferred from the RAM
buffer to the RBR register of the Mimic. Note that if the RBR
interrupts were not disabled, the RBR interrupts will occur
indefinitely until data is put in the RBR. Remember to Reset
the Highest IUS  before returning from the interrupt.

RBRIRQ Transfers Data From RAM Buffer 
To RBR Register Of The Mimic

RBRIRQ

Data In
RAM Buffer

?

NoYes

Transfer 1 Byte From
RAM Buffer To RBR

Reset Highest IUS

Return

Reset RAM Buffer

Disable RBR Interrupts

Return

Reset Highest IUS

Figure 6.  RBRIRQ Interrupt Service Flowchart

Barbara E Lau
AN006801-0201



6-65

Z182 PROGRAMMING THE MIMIC
APPLICATION  NOTEZilog

AN971800500

PRECAUTIONS / CONSIDERATIONS

■ Make sure that the Mimic is multiplexed properly in the
System Configuration Register (address xxEFH).

■ Mimic Emulation timers should be utilized to prevent
PC software “locking up." The emulation timers slow
down data transfer as if the Mimic were an actual
16550 (time required to do serial shifting of data).

■ Mimic Timers require that the ESCC Ch. B baud rate
generator output is set for /TRxCB pin.

■ Disable Mimic timers prior to modifying the timer
constants.

■ Reset the Mimic’s Highest Interrupt Under Service
during initialization, at the end of every Mimic interrupt
service routine, and in the main program loop.

■ TEMT bit of the 16550 is set when transmit FIFO and
transmit shift register is empty. There is no transmit
shift register on the Mimic, so the Static Z180 must
intelligently decide when to set this bit. This bit is
automatically reset when data is written to the Transmit
FIFO. PC communication software polls this bit after
transmitting a block of data. The software will halt
transmission if the TEMT bit is not set by the Static
Z180.

■ Intelligently select when RBR interrupts should be
enabled, otherwise RBR interrupts will occur indefinitely
(since the RBR FIFO is always empty until something
is received).

■ Mimic interrupt vectors may not be modified per specific
register interrupts (FCR, LCR, MCR, DLC, DLM). Note
that the RBR, TTO, and THR interrupt vectors are
reliable. Unmodified vectors will interrupt with NOIRQ
condition vector. Place a service routine to the handler
of the NOIRQ vector that will check FCR, LCR, MCR,
DLC, and DLM registers and modify the ESCC data
link according to the changes in these registers. Don’t
forget the Reset Highest IUS command at the very end
of the interrupt service routine.

■ Do not attempt to use the Z182’s internal DMAs for
data transfer to/from the Mimic.

■ Some trial and error may be required to find optimum
values for Mimic serial emulation timers. If the timer
constants are too low, the PC hardware/software may
not be able to handle the interrupt cycle time. If the
timer constant is too high, data transfer efficiency may
suffer. If the RBR serial timer constant is set too high,
the PC may be flagged with an error interrupt without
any data in the RBR FIFO.

Barbara E Lau
AN006801-0201



6-66

Z182 PROGRAMMING THE MIMIC
APPLICATION  NOTEZilog

AN971800500

CONCLUSION

The Z182’s Mimic core is not very difficult to program. This
Application Note (ECHO182 source code is found in
Appendix A) is meant to be a good example of how the
Mimic can be programmed to work in conjunction with PC
software programs for communication. The hardware de-
sign of the Z8018200ZCO evaluation board serves as a
good hardware example of how the Z182 interfaces with

the PC bus. The schematic of the Z8018200ZCO evalua-
tion board is shown in Figures 7a, 7b, and 7c. With this
Application Note, a developer can plug-and-play with the
Z182 to gain familiarization with the Mimic. The ECHO182
can also be modified and optimized to fit specific applica-
tions.

Barbara E Lau
AN006801-0201



6-67

Z182 PROGRAMMING THE MIMIC
APPLICATION  NOTEZilog

AN971800500

EVALUATION BOARD SCHEMATICS

F
ig

ur
e 

7a
.  

Z
80

18
2 

E
va

lu
at

io
n 

B
oa

rd

Barbara E Lau
AN006801-0201



6-68

Z182 PROGRAMMING THE MIMIC
APPLICATION  NOTEZilog

AN971800500

EVALUATION BOARD SCHEMATICS (Continued)

F
ig

ur
e 

7b
.  

Z
80

18
2 

E
va

lu
at

io
n 

B
oa

rd

Barbara E Lau
AN006801-0201



6-69

Z182 PROGRAMMING THE MIMIC
APPLICATION  NOTEZilog

AN971800500

Figure 7c.  Z80182 Evaluation Board

Barbara E Lau
AN006801-0201



6-70

Z182 PROGRAMMING THE MIMIC
APPLICATION  NOTEZilog

AN971800500

APPENDIX A
ECHO182.S Source Code

ECHO182.S™   written by Del Miranda, Zilog, Inc.
This program uses the Z182 Mimic Cell to interface to the
PC. Whatever data is transmitted to com port is ECHOed
back to PC.

;*************************************************************************************************************************************
*include 182macro.lib

ascii_lf: equ 00ah
ascii_cr: equ 00dh
null: equ 00h

org 00000h
jp 1000h

;-------------------------------------------------------------- Z182 Initialization --------------------------------------------------------------
org 1000h
di
ld hl,0d400h ;set up stack
ld sp,hl
im 2
ld a,07h ;setup int vector location
ld i,a ;at 07xxh

ld hl,inittab
init0: ld a,(hl)

cp 0ffh
jr z,initend
ld c,a ;initialization
inc hl ;goes to initialization table
otim ;IO address first-data second
jr init0 ;until ffh is given as address

inittab:
db ccr ;standard /2 clock
db 00h
db itc ;disable interrupts first
db 00h
db icr ;standard IO mapping
db 00h
db dcntl ;dma control - unnecessary
db 0f0h
db rcr ;refresh control - unneccessary
db 3ch
db omcr ;no Z80 ext peripherals, dont care
db 3fh
db itc ;enable interrupts now
db 01h
db pinmux ;use /mreq for memory access
db 00h
db syscr ;multiplex mimic, int vectors exported
db 17h
db romend ;setup rom/ram boundries
db 0ch ; ROM from 0000h to 0cfffh

(An assembler source and hex file of ECHO182 can be
found in the Z80 Support Directory of Zilog's Bulletin Board
Service (ZBBS (408) 370-8024  8-n-1.)

Barbara E Lau
AN006801-0201



6-71

Z182 PROGRAMMING THE MIMIC
APPLICATION  NOTEZilog

AN971800500

db ramstart ; RAM from d000h to ffffh
db 0dh
db ramend
db 0fh
db cntla0 ;set up async port for 9600 baud
db 61h ;given a 18.432 MHz XTAL in /2 mode
db cntlb0
db 21h

db stat0 ;disable asci interrupts
db 00h
db stat1
db 00h

db cntr ;disable csio ints
db 0fh

db tcr ;disable timer ints
db 00h

db dstat ;disable dma ints
db 32h

db il ;set il=000
db 00h

;*************************************** ESCC Baud Rate Gen. Setup for Mimic Timers *************************************

db sccbcnt ;reset ESCC
db 09h
db sccbcnt
db 0d0h
db sccbcnt
db 09h
db sccbcnt
db 00h
db sccbcnt ;timer low
db 0ch
db sccbcnt
db 0deh
db sccbcnt ;timer high
db 0dh
db sccbcnt
db 01h
db sccbcnt ;output baud rate to /TRxC
db 0bh ;Mimic reads this pin for timers
db sccbcnt
db 06h
db sccbcnt ;baud rate generator enable
db 0eh
db sccbcnt
db 03h

Barbara E Lau
AN006801-0201



6-72

Z182 PROGRAMMING THE MIMIC
APPLICATION  NOTEZilog

AN971800500

APPENDIX A (Continued)
ECHO182.S Source Code

db sccbcnt ;disable interrupts
db 09h
db sccbcnt
db 00h

db sccacnt ;disable interrupts
db 09h
db sccacnt
db 00h

db 0ffh
;----------------------------------------------------- End of Z182 General Initialization ------------------------------------------------------
initend:

ld hl,prompt_msg ;print my message to ASCI0
call message

;-------------------------------------------------------------- Mimic Initialization -----------------------------------------------------------------
ld a,05h ;disable Mimic timers, INT mode 2
out0 (mmcr),a ;out 2 mode for HINTR line

ld a,00h
out0 (ivec),a ;int vector of 070xh, x changes

ld a,80h ;according to int condition
out0 (iusip),a ;reset highest Mimic int under service

ld a,28h
out0 (0eah),a ;setup RBR and THR FIFO timeouts
out0 (0ebh),a

ld a,0ah ;setup RBR and THR serial emulation timers
out0 (0fah),a
out0 (0fbh),a

ld a,020h ;enable RBR timeout, 1 byte THR trigger level
out0 (fcr),a

;*************************************************************************************************************************************
;
Note: Although setting a 1 byte THR interrupt trigger level means more interrupts for the Z182, some (if not all) 16550

PC code will not put more data in the THR buffer unless the THRE bit is set (transmit buffer is empty). Setting the
THR interrupt trigger level to 4,8, or 14 bytes is suggested for proprietary designs where the application does
not need to remain compatible to third party communication software. For use in modems, a THR interrupt trigger
level of 1 is suggested.

;
;*************************************************************************************************************************************

ld hl, 0d800h ;setup buffer pointers
ld de, 0d800h

ld a,40h ;set TEMT bit, PC software often reads this
out0 (lsr),a

Barbara E Lau
AN006801-0201



6-73

Z182 PROGRAMMING THE MIMIC
APPLICATION  NOTEZilog

AN971800500

ld a,0c5h ;enable Mimic timers, INT mode 2
out0 (mmcr),a ;out 2 mode for HINTR line. Note

;that timers values are not changed
;while timer is running.

ld a,0c0h
out0 (mimie),a ;enable Mimic THR interrupts

;----------------------------------------------------------- End of Mimic Initializtion ------------------------------------------------------------

loop:   nop ;constant looping, program root
ei
jp loop

;---------------------------------------------- Subroutines to Display My Message to ASCI ---------------------------------------------

send_char: ;sends message out to ASCI0
;only used to output my start message

call out_char ;has nothing to do with Mimic
inc hl

message:
ld a,(hl)
cp a,null
jr nz,send_char
ret

out_char:

push af
txlop:  in0 a,(stat0)

bit 1,a
jr z,txlop
nop
nop
pop af
out0 (tdr0),a
ret

prompt_msg:

.ascii “ ECHO182 version 3.0”, ascii_cr,ascii_lf

.ascii “ Auto Echo for Z182-18.432 MHz XTAL”,ascii_cr,ascii_lf

.ascii “ 9600 baud monitor on ASCI0”,ascii_cr,ascii_lf

.ascii “ by Del Miranda - Zilog Euro Marketing”,ascii_cr,ascii_lf

.ascii ascii_cr,ascii_lf,ascii_cr,ascii_lf,null

;------------------------------------------------------- End of Sendchar Subroutine ----------------------------------------------------------

;*************************************************************************************************************************************
; INTERRUPT SERVICE ROUTINE - RBRIRQ
;*************************************************************************************************************************************

rbrirq:
;INT ROUTINE FOR RBR INTERRUPTS
;OCCURS WHEN RBR IS EMPTY

ld a,l ;compare buffer pointer
cp e ; if hl=de, then get out
jr z,out

Barbara E Lau
AN006801-0201



6-74

Z182 PROGRAMMING THE MIMIC
APPLICATION  NOTEZilog

AN971800500

APPENDIX A (Continued)
ECHO182.S Source Code

okay: inc de
ld a,(de)
out0 (rbr),a ; else, output data to RBR
ld a,80h ; reset highest IUS
out0 (iusip),a

ret
out: ;return to loop

ld a,h
cp d
jr nz,okay

ld hl,0d800h ;reset buffer pointers
ld de,0d800h

ld a,0c0h ;disable RBR interrupts
out0 (mimie),a ;otherwise RBR will always interrupt
ld a,80h ;reset highest IUS
out0 (iusip),a
ret ;return to loop

;*************************************************************************************************************************************
; INTERRUPT SERVICE ROUTINE - THRIRQ
;*************************************************************************************************************************************

;INT ROUTINE FOR THR INTERRUPTS
;OCCURS WHEN PC WRITES TO THR
;AND TIMEOUT OCCURS - ONLY 1 BYTE IS READ

thrirq:
inc hl
in0 a,(thr) ;increment pointer
ld (hl),a ;store THR date in buffer
out0 (tdr0),a ; output to asci

ld a,40h
out0 (lsr),a ;set TEMT bit when transmit data is

notemt: ld a,0d0h ;shifted out , we force it here
out0 (mimie),a ;enable RBR,THR ints

ld a,80h
out0 (iusip),a ;reset Mimic highest int under service

ret ;return to loop

;*************************************************************************************************************************************
; INTERRUPT SERVICE ROUTINE - FIFOTHR
;*************************************************************************************************************************************

 ;INT ROUTINE FOR THR FIFO INTERRUPTS
 ;READS ALL DATA IN FIFO UNTIL EMPTY

fifothr:
inc hl ;increment pointer
in0 a,(thr) ;write THR data to buffer

Barbara E Lau
AN006801-0201



6-75

Z182 PROGRAMMING THE MIMIC
APPLICATION  NOTEZilog

AN971800500

ld (hl),a
out0 (tdr0),a ; output to asci

in0 a,(lsr) ;check to see if THR FIFO is empty
bit 5,a ;if not empty go back to fifothr
jr nz,notempt2
jr fifothr

notempt2: ;else force TEMT bit
ld a,40h
out0 (lsr),a

ld a,0d0h ;enable RBR, THR ints
out0 (mimie),a
ld a,80h ;reset highest Mimic int under service
out0 (iusip),a
ret ;return to loop

;*************************************************************************************************************************************
; UNEXPLAINED INTERRUPT HANDLERS WORKAROUND
;*************************************************************************************************************************************

uknirq:
ld a,80h ;workaround - dummy service routine
out0 (iusip),a
ret

;********************************************** INTERRUPT VECTOR TABLE **************************************************
org 0700h
dw uknirq ;workaround, for NOINT vector
dw uknirq
dw uknirq
dw uknirq
dw uknirq
dw rbrirq ;table entry for rbr empty interrupt
dw thrirq ;table entry for timeout - disabled
dw fifothr ;table entry for thr has data interrupt

**************************************************************************************************************************************
.xlist
;*************************************************************************************************************************************
;* File name - 182macro.lib
;* Macro library for Z180 new instructions for asm800
;* 1/26/89 Jim Nobugaki
;* revised   7/14/92 Del Miranda
;*************************************************************************************************************************************

;Z180 System Control Registers

;ASCI Registers
cntla0: equ 00h ; ASCI Cont Reg A Ch0
cntla1: equ 01h ; ASCI Cont Reg A Ch1
cntlb0: equ 02h ; ASCI Cont Reg B Ch0
cntlb1: equ 03h ; ASCI Cont Reg B Ch1
stat0: equ 04h ; ASCI Stat Reg Ch0
stat1: equ 05h ; ASCI Stat Reg Ch1
tdr0: equ 06h ; ASCI Tx Data Reg Ch0

Barbara E Lau
AN006801-0201



6-76

Z182 PROGRAMMING THE MIMIC
APPLICATION  NOTEZilog

AN971800500

APPENDIX A (Continued)
ECHO182.S Source Code

tdr1: equ 07h ; ASCI Tx Data Reg Ch1
rdr0: equ 08h ; ASCI Rx Data Reg Ch0
rdr1: equ 09h ; ASCI Rx Data Reg Ch1

;CSI/O Registers
cntr: equ 0ah ; CSI/O Cont Reg
trdr: equ 0bh ; CSI/O Tx/Rx Data Reg

;Timer Registers
tmdr0l: equ 0ch ; Timer Data Reg Ch0-low
tmdr0h: equ 0dh ; Timer Data Reg Ch0-high
rldr0l: equ 0eh ; Timer Reload Reg Ch0-low
rldr0h: equ 0fh ; Timer Reload Reg Ch0-high
tcr: equ 10h ; Timer Cont Reg
tmdr1l: equ 14h ; Timer Data reg Ch1-low
tmdr1h: equ 15h ; Timer Data Reg Ch1-high
rldr1l: equ 16h ; Timer Reload Reg Ch1-low
rldr1h: equ 17h ; Timer Reload Reg Ch1-high
frc: equ 18h ; Free Running Counter

;CPU Control Registers (Only for Z8S180)
ccr: equ 1fh ; CPU Control Reg.

;DMA Registers
sar0l: equ 20h ; DMA Source Addr Reg Ch0-low
sar0h: equ 21h ; DMA Source Addr Reg Ch0-high
sar0b: equ 22h ; DMA Source Addr Reg Ch0-b
dar0l: equ 23h ; DMA Dist Addr Reg Ch0-low
dar0h: equ 24h ; DMA Dist Addr Reg Ch0-high
dar0b: equ 25h ; DMA Dist Addr Reg Ch0-B
bcr0l: equ 26h ; DMA Byte Count Reg Ch0-low
bcr0h: equ 27h ; DMA Byte Count Reg Ch0-high
mar1l: equ 28h ; DMA Memory Addr Reg Ch1-low
mar1h: equ 29h ; DMA Memory Addr Reg Ch1-high
mar1b: equ 2ah ; DMA Memory Addr Reg Ch1-b
iar1l: equ 2bh ; DMA I/O Addr Reg Ch1-low
iar1h: equ 2ch ; DMA I/O Addr Reg Ch1-high
bcr1l: equ 2eh ; DMA Byte Count Reg Ch1-low
bcr1h: equ 2fh ; DMA Byte Count Reg Ch1-high
dstat: equ 30h ; DMA Stat Reg
dmode: equ 31h ; DMA Mode Reg
dcntl: equ 32h ; DMA/WAIT Control Reg

;System Control Registers
il: equ 33h ; INT Vector Low Reg
itc: equ 34h ; INT/TRAP Cont Reg
rcr: equ 36h ; Refresh Cont Reg
cbr: equ 38h ; MMU Common Base Reg
bbr: equ 39h ; MMU Bank Base Reg
cbar: equ 3ah ; MMU Common/Bank Area Reg
omcr: equ 3eh ; Operation Mode Control Reg
icr: equ 3fh ; I/O Control Reg
pinmux: equ 0dfh ;Interrupt edge/pin mux register

Barbara E Lau
AN006801-0201



6-77

Z182 PROGRAMMING THE MIMIC
APPLICATION  NOTEZilog

AN971800500

scr: equ 0f7h ;Mimic scratch register
romend: equ 0e8h ;rom boundry
ramstart: equ 0e7h ;ram start boundry
ramend: equ 0e6h ;ram end boundry
syscr: equ 0efh ;system pin control
mmcr: equ 0ffh ;mimic master control register
iusip: equ 0feh ;int under service register
mimie: equ 0fdh ;mimic interrupt enable reg
ivec: equ 0fch ;mimic int vector
lsr: equ 0f5h
fcr: equ 0ech
rbr: equ 0f0h
thr: equ 0f0h

;PIO registers
ddra: equ 0edh ;data direction register a
ddrb: equ 0e4h ;data direction register b
ddrc: equ 0ddh ;data direction register c
dra: equ 0eeh ;port a data
drb: equ 0e5h ;port b data
drc: equ 0deh ;port c data

;ESCC registers
sccacnt: equ 0e0h ;ESCC control channel A
sccad: equ 0e1h ;ESCC data channel A
sccbcnt: equ 0e2h ;ESCC contol channel B
sccbd: equ 0e3h ;ESCC data channel B

?b equ 0
?c equ 1
?d equ 2
?e equ 3
?h equ 4
?l equ 5
?a equ 7

??bc equ 0
??de equ 1
??hl equ 2
??sp equ 3
slp macro
db 11101101B
db 01110110B
endm

mlt macro ?r
db 11101101B
db 01001100B+(??&?r AND 3) SHL 4
endm

in0 macro ?r, ?p
db 11101101B
db 00000000B+(?&?r AND 7) SHL 3
db ?p
endm

Barbara E Lau
AN006801-0201



6-78

Z182 PROGRAMMING THE MIMIC
APPLICATION  NOTEZilog

AN971800500

APPENDIX A (Continued)
ECHO182.S Source Code

out0 macro ?p, ?r
db 11101101B
db 00000001B+(?&?r AND 7) SHL 3
db ?p
endm

otim macro
db 11101101B
db 10000011B
endm

otimr  macro
db 11101101B
db 10010011B
endm

otdm   macro
db 11101101B
db 10001011B
endm

otdmr macro
db 11101101B
db 10011011B
endm

tstio  macro   ?p
db 11101101B
db 01110100B
db ?p
endm

tst macro   ?r
db 11101101B
ifidn <?r>,<(hl)>
db 00110100B
else
ifdef ?&?r
db 00000100B+(?&?r AND 7) SHL 3
else
db 01100100B
db ?r
endif
endif
endm
.list
end

ECHO182.S™ is a trademark of Zilog, Inc.

Barbara E Lau
AN006801-0201



6-79

Z182 PROGRAMMING THE MIMIC
APPLICATION  NOTEZilog

AN971800500

© 1997 by Zilog, Inc. All rights reserved. No part of this document
may be copied or reproduced in any form or by any means
without the prior written consent of Zilog, Inc. The information in
this document is subject to change without notice. Devices sold
by Zilog, Inc. are covered by warranty and patent indemnification
provisions appearing in Zilog, Inc. Terms and Conditions of Sale
only. Zilog, Inc. makes no warranty, express, statutory, implied or
by description, regarding the information set forth herein or
regarding the freedom of the described devices from intellectual
property infringement. Zilog, Inc. makes no warranty of mer-
chantability or fitness for any purpose. Zilog, Inc. shall not be
responsible for any errors that may appear in this document.
Zilog, Inc. makes no commitment to update or keep current the
information contained in this document.

Zilog’s products are not authorized for use as critical compo-
nents in life support devices or systems unless a specific written
agreement pertaining to such intended use is executed between
the customer and Zilog prior to use. Life support devices or
systems are those which are intended for surgical implantation
into the body, or which sustains life whose failure to perform,
when properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to result in
significant injury to the user.

Zilog, Inc. 210 East Hacienda Ave.
Campbell, CA 95008-6600
Telephone (408) 370-8000
Telex 910-338-7621
FAX 408 370-8056
Internet: http://www.zilog.com

Barbara E Lau
AN006801-0201




