
PUG003305-1112
Introduction

The Z8051 family of microcontrollers is a new Zilog product line based on the 8051
microprocessor architecture. Unlike other Zilog products, proprietary Zilog development
tools to support the Z8051 family are not provided, due to the 8051 processor core’s being
well-supported by a large assortment of development tools from third-party tools suppli-
ers. Among these suppliers, Zilog recommends the free open-source tools from the Small
Device C Compiler (SDCC) software project and the Keil tools from Keil Software. Cus-
tomers can also choose to work with other excellent third-party tools that are available for
the 8051 architecture.

Because these development tools are not provided by Zilog, and because their use may be
unfamiliar to Zilog customers, this product user guide is provided to help users get started
using these tools in this potentially new development environment. Both the SDCC and
Keil tools are detailed in their own documentation, which customers should consult as the
ultimate source of information about these tools. Zilog assumes no responsibility for the
functioning, performance or safety of these third-party tools.

First Steps With Z8051 Tools

To get started working with the Z8051 for the first time, a good place to begin is with the
user manual for the Z8051 development kit you are working with. Each of these manuals
offers a brief, step-by-step guide to building your first sample Z8051 project in their
respective Build and Run the [sic] Demo Project sections, as well as general instructions
for installing and setting up the Z8051 software. In this product user guide, it is assumed
that you have successfully set up the software and built your demo project as described in
these manuals.

Goal Of This Document

The purpose of this product user guide is to provide enough additional information so that
you can begin to develop your own applications, learning the basics of the SDCC and/or
Keil tools along the way. This document discusses the following topics:

• Header files provided by Zilog to help you write code for Z8051 peripheral hardware
and to resolve code portability issues

• Memory map issues you must confront and how to solve them

• Getting these tools to deal properly with interrupt service routines

• How to build an application using the SDCC tools
PUG003305-1112
Product User Guide
Z8051 Tools
 Page 1 of 55

Z8051 Tools
Product User Guide
• Why you must also work with the Zilog OCD Debug Tool, and how this requirement
affects the build process

• How to build an application using the Keil tools

• Where to find further information about the SDCC and Keil tools

Conventions Used In This Document

Special fonts are used throughout this document to more easily distinguish normal text
from file names, source code terms, and similar elements. Throughout this document, the
names of all files, folders and paths are displayed in the Courier New typeface, as are all
listings of source code or command files, example code segments parsed from such files,
source code entities including keywords (such as int or void), variable names, and
expressions in source code.

At times, a shorthand notation for a sequence of selections in a graphical user interface
(GUI) is displayed in a bold typeface. Therefore, Project → Options → Device → Data-
base means you would first select the Project menu item, next select Options from the
available choices in the Project menu, then select the Device submenu item, and finally
select Database.

Writing Your Code: Notes About Header Files

Before building your application, you must write the code, for which you can use any edit-
ing tool of your choice. Zilog provides several header files that should be very useful to
you and save you time at developing your application. These header files will make it eas-
ier and less error-prone to write code for the Z8051 family’s peripheral devices, as
described in the remainder of this section. They will also take care of some portability
issues for you. Zilog encourages you to include these header files in your source code.

These header files can be found in the Zilog software installation contained in the follow-
ing path:

<Z8051 Install>\include

In this path, <Z8051 Install> is the location on your hard drive in which you installed
the Z8051 software. The C subdirectory at this location contains C header files, and assem-
bler header files are included in the asm subdirectory.

The following types of header files are provided:

• Family-specific C header files that define special function registers (SFRs) and inter-
rupt numbers

• C header files that fix compiler compatibility issues

• Family-specific assembler include files that define the SFRs
PUG003305-1112 Page 2 of 55

Z8051 Tools
Product User Guide
Family-Specific C Header Files

The Z8051 product line includes a number of different families of microcontrollers, each
defined by common SFRs & interrupts, and each oriented toward different types of appli-
cations. For each of these families, a unique Zilog-provided C header file defines the
names and addresses of its SFRs, and also provides symbolic names for its interrupt num-
bers. For example, the z51f0811.h file provides these definitions for the Z51F0811
microcontroller family; this file is contained in the following path:

<Z8051 Install>\include\C\z51f0811.h

By including this z51f0811.h file in your C code, you can work with the names of the
SFRs and interrupts rather than the raw addresses or numbers associated with them. As a
result, your code will be easier to read and less prone to errors.

The use of these family-specific header files also makes your code more portable, in two
senses. First, you can more easily move an application from one Z8051 microcontroller to
one in another family. The new target family may place an SFR that both families have in
common at a different address, and assign different interrupt numbers to a common inter-
rupt source. However, by simply changing which header file you include in your code, all
of these details are taken care of. Your code will not only compile, but more importantly,
it will run correctly on the new part.

Use of the Zilog family-specific header files also makes your code more portable between
the SDCC and Keil compilers because you can begin your project using the SDCC tools,
which are free and therefore a good choice for preliminary exploration. If you should
switch to the Keil tools at a future date, your SFRs will continue to be properly defined.
This process does not occur automatically, because while both the SDCC and Keil compil-
ers support a special class of C variables called SFRs, (which have the property of being
assigned a fixed address), the two compilers each use a different syntax.

Working Around Compiler Compatibility Issues

This difficulty of incompatible syntax is handled by a header file called compiler.h,
which is part of the SDCC distribution but works equally well when used with the Keil
tools (that, indeed, is its purpose: to make your code more compiler-independent). For
convenience, we have placed an extra copy of the compiler.h file into the following
path so that you are not required to add another include path in your project.

<Z8051 Install>\include\C

The compiler.h header file takes an SFR declaration in a particular, preprocessor macro
format and translates it into the appropriate syntax for either the Keil or SDCC Compiler.
The Zilog family-specific header files (e.g., z51f0811.h) define the SFRs using this
macro format, and therefore do not incorporate the legal syntax for either the SDCC or
Keil compilers, unless the compiler.h file has previously been included.

Upon inspection of the compiler.h file, either the SDCC preprocessor symbol or
__CX51__ for the Keil tools must be defined to select the proper definitions. The SDCC
Compiler automatically defines the SDCC symbol, but when using the Keil tools, you must
PUG003305-1112 Page 3 of 55

Z8051 Tools
Product User Guide
ensure that __CX51__ is defined in the Target Options → C51 → Preprocessor Sym-
bols setting. This symbol contains a double underscore (__) at its beginning and end;
CX51 or C51 are Keil’s names for its 8051 C Compiler.

Another useful header file, ExtKeywords.h, is also located in the path noted above. Its
purpose is, again, to provide portability between the Keil and SDCC tool chains. These
two compilers each add a number of extension keywords to the C language, primarily to
define specific address spaces used in the Z8051 architecture such as idata, xdata, and
similar spaces. Additional keywords apply specifically to the 8051 CPU, such as using,
reentrant, and interrupt. Keil and SDCC use very similar, but not identical, names
for these keywords. The ExtKeywords.h file automatically translates each keyword to
its correct form for the compiler you are using.

For added convenience, the Zilog header file, portable.h, includes both <com-
piler.h> and <ExtKeywords.h>, as well as some useful bit definitions and a few other
definitions of general utility. This file is located in the following path:

<Z8051 Install>\include\C\portable.h

You can address all of these issues of SFR definitions, compiler compatibility and cross-
family portability by simply adding the following two lines to each C source code file:

#include <portable.h>
#include <z51f0811.h> // or appropriate family

Assembler Include Files

Finally, we should briefly discuss the assembler include or header files which are located
in the following path:

<Z8051 Install>\include\asm

Two subdirectories are contained in the asm directory: Keil and SDCC. In each of these
subdirectories, a set of .inc files are specific to each of the Z8051 microcontroller fami-
lies. These files apply the SFR definitions, just like the C header files do, but use a syntax
that is appropriate for the Keil or SDCC assemblers (as opposed to the compilers). These
.inc files can be included in your assembly code, as required.

Controlling The Memory Map

There are two issues related to your application’s memory map that the build tools do not
manage automatically. You must explicitly set up the build parameters so that these mem-
ory map requirements are respected in the build process. These issues must be managed no
matter which tool chain you use, though the details of how this management task is
applied are different between the SDCC and Keil tools. This section describes the issues
and their solutions in general terms. These issues are:

• Vector table allocation
PUG003305-1112 Page 4 of 55

Z8051 Tools
Product User Guide
• Application-specific hardware memory mapping

Vector Table Allocation

All 8051 processors reserve a portion of program space for an interrupt vector table, which
by default begins at address 0x00. Both the Keil and SDCC compilers place entries in this
vector table for interrupt service routines (ISRs) defined with the interrupt or
__interrupt keyword. Because most applications will only use a fraction of all of the
interrupt sources defined for the MCU they are using, gaps in the vector table are likely.
Additionally, the vectors that are actually used may not extend to the end of the memory
space that is, in principle, set aside for the vector table.

As a concrete example, consider an application for the Z51F0811. This MCU defines 31
interrupt numbers whose vectors are at addresses 0x00 to 0xFB. Allowing 3-byte
addresses for all interrupt vectors including the last one, this vector table would occupy
addresses 0x00 to 0xFD, and executable code could begin at address 0xFE.

Each Z8051 MCU product specification provides a detailed interrupt vector table in its
Interrupt Controller chapter.

Suppose you have an application for your Z51F0811 chip in which you intend to use only
four interrupts: hardware reset, timer 0, and external interrupts 4 and 5. The vectors for
these interrupts can be found at addresses 0x00, 0x63, 0xE3, and 0xEB, respectively. If
they are not prevented from doing so, both the SDCC and Keil linkers will begin locating
executable code just after the final vector (i.e., the vector with the highest address); in this
case, at an approximate address of 0xEE. For a number of reasons, this practice is not a
good one, and it is best to make the Linker avoid the entire vector table for executable
code.

The arguments for enforcing this rule include:

• You may experience unexpected interrupts occurring due to noise on the input pins, or
other causes

• Your code could mistakenly enable an incorrect interrupt pin

• You might later add another interrupt source which would then conflict with code stor-
age unless you remember to change the Linker settings at the same time

All of these problems might damage your system before you can find and correct the error,
if you have executable code in the vector table. It is much safer if the unused vector loca-
tions are filled with a RETI or NOP instruction. Additionally, the total amount of space
allotted to a complete vector table is usually 256 bytes or less, and typical Z8051 parts
have 8 KB of program memory. Playing it safe in this regard therefore has only a minor
impact on the available code size.

Note:
PUG003305-1112 Page 5 of 55

Z8051 Tools
Product User Guide
Figure 1 illustrates this issue in a graphical manner, in which the Z8051 OCD Debug Tool
is used to capture a snapshot of code memory in the area of the vector table. The interrupts
in use are the four that are discussed above. The Linker is essentially forced to avoid put-
ting code into the vector table, by defining a dummy ISR for the last interrupt in the table,
external interrupt 7 at address 0xFB.

In Figure 1, the used interrupt vectors 0x00, 0x63, 0xE3 and 0xEB are highlighted in
blue, as is the vector at 0xFB for the dummy ISR. The unused vectors, which the Linker
has filled with the RETI instruction (op code 0x32), are highlighted in red. A purple box
highlights the beginning of executable code at address 0xFE.

In both the SDCC and Keil tool sets, the solution is to make the Linker avoid the full
extent of the vector table for executable code.

Filling a vector with a RETI instruction is typical of SDCC tools. However, NOP instruc-
tions are typically used with the Keil tools.

Figure 1. Protecting the Vector Table for a Z51F0811 Application

Note:
PUG003305-1112 Page 6 of 55

Z8051 Tools
Product User Guide
Application-Specific Hardware Memory Mapping

Some Z8051 MCUs map special hardware devices into a portion of the memory map. In
these cases, the Linker must be told not to use that part of the memory map for normal data
storage. For example, the Z51F3220 MCUs are oriented toward LCD display applications,
and LCD segments are mapped to external data addresses 0x00 to 0x1A in these devices.
The Linker must be instructed to accommodate this by beginning the external data space at
address 0x1B.

Please refer to the product specification for your particular Z8051 MCU to determine if
these kinds of special memory map requirements apply to your project.

Interrupt Service Routines

The Keil and SDCC compilers have completely conflicting requirements in the area of
function prototypes for ISRs. The SDCC Compiler not only requires you to create a proto-
type for every ISR, but the prototype must either be in the module that contains the
main() function, or in a file that is included in that module. This mechanism is one in
which the SDCC Compiler creates entries in the vector table for each ISR.

The Keil Compiler, on the other hand, forbids you from declaring a prototype for an ISR
anywhere at all! The interrupt keyword is explicitly not allowed in function prototypes.
Instead, you simply write the function body in some module, with no prototype anywhere,
and the Keil tools gather up all such ISR definitions and make the vector table entries.

These conflicting requirements present a bit of a challenge for writing code that is portable
to both compilers. The easiest solution is to place all of the ISR prototypes in a header file
which is conditionally included in the module that contains main():

#ifdef SDCC
#include "isrs.h"
#endif

Alternatively you could use that same conditional compilation around each ISR prototype:

#ifdef SDCC
void TIMER0_isr (void) interrupt Z_T0_VECT;
#endif

Using The SDCC Tools

SDCC is a Free Open Source software project, distributed under GNU General Public
License (GPL). Specifically, SDCC is a retargetable, optimizing ANSI-C compiler that
targets the 8051 architecture, among others. In addition to the C Compiler, related devel-
opment tools such as an assembler and linker are also provided as part of the overall
PUG003305-1112 Page 7 of 55

Z8051 Tools
Product User Guide
SDCC package. For more information about SDCC, refer to the SDCC - Small Device C
Compiler website or search the Internet for SDCC.

As part of the Z8051 software distribution that you received with your Z8051 develop-
ment kit, Zilog has included a copy of the latest distribution of SDCC tools. These tools
can be found in the following path:

<Z8051 Install>\sdcc_x.y.z

In this path, x.y.z is the full SDCC version number (for example, 3.1.0). These SDCC
tools include everything you require to build applications for the Z8051, including a C
compiler, assembler and linker.

In this document, we will discuss the use of SDCC outside of an integrated development
environment (IDE). The SDCC tools do not themselves include an IDE or other GUI for
driving the tools. Instead, the basic approach for developing applications using SDCC is
through a command-line interface or equivalent batch execution files which embed the
commands inside the batch file. Some instances of tool chains that have integrated the
SDCC tools have been developed, or are under development, using the Eclipse or other
IDEs. You may wish to search for these tool chains on the Internet, because the availabil-
ity and status of these tool chains is often fluid.

In this section, we will discuss the following topics:

• How to build an application with the SDCC tools

• How to solve memory mapping issues (vector table allocation and hardware memory
mapping) with the SDCC tools

• Limitations and oddities of the SDCC Compiler

• Debugging an SDCC-compiled application with the Z8051 OCD Debug Tool

• Where to obtain further information about the SDCC tools

Building Your Application With SDCC Tools

The process for building your application with the SDCC tools is essentially a very simple
one, as follows:

1. Open a command window.

2. Enter your commands with the correct options to compile each source code module in
your application; enter these commands one by one.

3. Enter a command with the correct options to link all of the compiled modules into an
executable file.

However, complications can arise upon specifying the correct options noted in steps 2 and
3. Additionally, it is unnecessarily laborious to literally type in commands one by one. It is
much more convenient to place all of the commands together in a batch file, then execute
the batch file. There are other conveniences we can place in the batch file to make creating
the batch file less tedious.
PUG003305-1112 Page 8 of 55

http://sdcc.sourceforge.net
http://sdcc.sourceforge.net

Z8051 Tools
Product User Guide
The remainder of this section discusses the details and the complications of such batch
files, some of which are included in the Z8051 software installation. However, it is useful
to remember that the purpose of these batch files is to first compile the separate modules,
then link them.

Running A Batch File

After a batch file has been correctly written, building the application is extremely easy:
just navigate to the batch file (an example batch file is highlighted in Figure 2) and double-
click it. Figure 3 shows the result of executing this batch file.

Figure 2. Executing a Batch File
PUG003305-1112 Page 9 of 55

Z8051 Tools
Product User Guide
The remainder of this section examines the contents of one of these batch files, which typ-
ically include the following elements:

• Definitions of some text strings that make writing the commands easier and less repe-
titious, including paths and build options

• Commands to perform preliminary steps such as cleaning away old files

• Commands to compile modules

• A command to link the compiled modules into an executable

Figure 3. Results of Batch File Execution
PUG003305-1112 Page 10 of 55

Z8051 Tools
Product User Guide
• A command to bring execution to a tidy completion

The specific file to work with is listed in its entirety in Appendix A. SDCC Build Batch
File Listing on page 52. This file is similar to those provided in the sample application
folders contained in the following path, which includes sample files for building a number
of demo applications:

<Z8051 Install>\samples

Defining Paths

The first section of the file uses the Set command to define some text strings, so that the
string name can be used later in the file, and thereby avoid the repeated typing of long text
strings. The relevant code fragment from the appendix appears below for convenience:

Set SDCC_DIR=..\..\..\SDCC_3.1.0
Set SDCC_BIN=%SDCC_DIR%\bin
Set LIB_DIR=..\..\lib\sdcc
Set OUTDIR=.\Sdcc_out

In the above code segment, SDCC_DIR represents the path to the location in which SDCC
(in this case, SDCC_3.1.0) was installed on your PC. All paths in this batch file are sup-
plied in relative terms, starting from the folder in which the batch file is located. The
“..\” notation in this path refers to the parent folder of this folder; therefore, the
“..\..\..” notation means the folder three levels above this folder. In other words, this
batch file is designed to be run from a folder three levels below the <Z8051 Install>
directory, and the definition for SDCC_DIR points to <Z8051 Install>\SDCC_3.1.0.
Using similar definitions, you can create a batch file anywhere on your computer and
define the path to the SDCC folder with a similar syntax.

The next line defines SDCC_BIN as the bin folder beneath SDCC_DIR. LIB_DIR is defined
next as a folder that will be used later; a particular library in this folder will be required in
the link step.

The % symbols surrounding SDCC_DIR in the above code segment mean that SDCC_DIR is
intended to be interpreted as a previously-defined text string and not as a literal string.

In the line after that, a string called OUTDIR is defined. This string could be used to define
an output folder to which the build output is to be directed. That folder is located just
below the current folder, because the period character (.) refers to the current directory.
Due to a quirk of the OCD debugger (a discussion that follows), OUTDIR is not actually
used for that purpose in this batch file.

Note:
PUG003305-1112 Page 11 of 55

Z8051 Tools
Product User Guide
Further information regarding command line or batch file syntax can be found in the
Microsoft Windows Help and Support utility.

Defining Build Options

The remaining two Set commands define two strings, CFLAGS (compiler flags) and
LFLAGS (linker flags), respectively. As a software project, SDCC was developed in a
Unix- or Linux-style environment and, although it can be run either in these two types of
operating system or in a Windows-style OS, it uses a Unix-like syntax to express the com-
piler and linker options as command-line flags. In this syntax, each option for the Com-
piler or Linker is given as a text string that begins with a dash or minus sign symbol (–)
followed by the text that defines the option. The text which defines that option ends when
white space, such as the space character, is encountered. Spaces are not allowed inside a
command line option.

The definition of CFLAGS is:

Set CFLAGS= -c --debug --use-stdout --model-large -V -I"../../../
include/C" -I"../common"

The Set CFLAGS command is a run-on command which continues across the two lines of
code above.)

This set of options is useful as a fairly generic group of compiler settings to build a typical
application.

The Set CFLAGS command causes the Compiler to include debug information in its out-
put so that the application can be debugged with a symbolic debugger. Error messages
must be directed to the standard output, which will cause them to be displayed in the com-
mand window in which you eventually will run the batch file. The SDCC large memory
model will be used to place all variables into the XData space, unless otherwise specified.
The 
–V (verbose) option causes the Compiler to display commands as it executes them, which
makes it easier for you to follow the Compiler’s progress as it tries to build your applica-
tion. The final two commands, with the –I option followed by a path inside quotation
marks, supply paths that must be searched for include files.

LFLAGS, in our simple example, uses basically the same options:

Set LFLAGS= --debug --use-stdout --model-large -V

Note:

Note:
PUG003305-1112 Page 12 of 55

Z8051 Tools
Product User Guide
Executing Preliminary Steps

Following the definition of these text strings using the Set command are the commands to
execute your actual build, beginning with:

@echo cleaning intermediate files
@call clean.bat

@echo compiling....

Several of these text strings use a syntax of @echo <some text> to instruct the batch
process to display, or echo, the data you have specified in the <some text> parameter to
your command window as the batch file executes. This display mechanism is, again, a
way for you to keep track of the Compiler’s progress as it builds your application. Another
type of command which appears often in this batch file uses the @rem <some text> syn-
tax. In this syntax, the @rem element can be thought of as a remark; such lines are simply
comments in the batch file and are not executed.

The first actual command that the batch file executes is to call another batch file,
clean.bat, which must be included in the same folder as the build batch file. The
clean.bat file contains only one line which, as it is displayed below, wraps onto a sec-
ond line.

@del *.sym *.lk *.mem *.adb *.lst *.asm *.rel *.rst *.cdb *.hex
*.map *.omf

The above code instructs the batch file to delete all files in the current directory (via the
@del command) that include any of the file name extensions that it lists. This task is nec-
essary because the build process, as defined in this batch file, is going to place all of its
output files – both the final executable file as well as all types of intermediate files – in the
current directory. We could avoid getting the current folder cluttered with all those files by
using OUTDIR to send them to a separate folder. As discussed above, however, the proper-
ties of the OCD debugger raise issues with that approach. Therefore, we have chosen to
use this technique of placing the files into the same folder as the source code and purging
the old files with each fresh build.

Compiling Source Code Modules

After clean.bat is run, the the Compiler can begin execution, as shown in the following
code segment:

@echo compiling....
@rem uarts.c
%SDCC_BIN%\sdcc.exe %CFLAGS% -o"."/ ../common/uarts.c
@if errorlevel 1 goto Compiling_Error

@rem main.c
%SDCC_BIN%\sdcc.exe %CFLAGS% main.c
@if errorlevel 1 goto Compiling_Error
PUG003305-1112 Page 13 of 55

Z8051 Tools
Product User Guide
The previously-defined SDCC_BIN string is used to give the path to the sdcc executable,
which invokes the Compiler. Next, the CFLAGS string is used to specify compiler
options, as described earlier; the name of the C source code module is then given. This
command is then simply repeated for each of the modules in the application: in this case,
the program consists of the source code files uarts.c and main.c.

uarts.c is not located in the same folder as the batch file; therefore, its path must be sup-
plied in the command. The –o"."/ option for building the uarts.c file tells the Com-
piler to place the output of this compilation (via the –o command) in the current directory,
remembering that "." refers to the current directory using Unix-style commands.

After each source code file is compiled, the batch file checks to determine if errors were
reported. If errors exist, execution is diverted to the label specified by the Goto command:

:Compiling_Error
@Echo.
@Echo !!
@Echo !!! Compiling Errors occurred. See above !!
@Echo !!
@goto end

:Linking_Error
@Echo.
@Echo !!
@Echo !!! Linking Errors occurred. See above !!
@Echo !!

In this case, the command window, after reporting the specific error messages from the
Compiler, would display another message to alert you that the build was terminated by
compiler errors; this command window then terminates. A similar approach is used for
reporting linker errors. If the build is error-free, the following success message will be dis-
played:

@echo.
@echo Build was complete and successful.
@goto end

The compilation process creates several output files for each source file as it is compiled.

The Compiler actually creates assembly code, then automatically invokes the 8051 assem-
bler to assemble the generated assembly code into object code.

Note:

Note:
PUG003305-1112 Page 14 of 55

Z8051 Tools
Product User Guide
For example, in this build – assuming there are no errors – we should create the
uarts.adb, uarts.asm, uarts.lst and uarts.rel files, as indicated in Table 1.
Similarly, when main.c is compiled, four new files with these filename extensions will
be created, such as main.adb, main.lst, etc.

Linking

After all of the C files are compiled, the final step in the build process is to link them
together into a completed executable application by executing the next command in our
batch file, as the following code segment shows.

@echo linking....
%SDCC_BIN%\sdcc.exe %LFLAGS% -oled_blink.hex main.rel uarts.rel
%LIB_DIR%\crtxinit.rel
@if errorlevel 1 goto Linking_Error

Note that SDCC is slightly unusual, in that the same executable program, sdcc.exe, per-
forms both the compiling and linking operations. Which operation is to be performed in a
given command depends on the type of input file it is tasked to work on. The input file or
files are supplied as the final arguments in the command line. In the command above, the
input files are primarily the .rel files previously created in the compile step; therefore
the SDCC knows that it is being tasked to run the Linker on these files. The output of this
step (again, the -o command is used to specify output) is an executable file called
led_blink.hex.

This link command also shows how you can link to a separate, previously-built library to
create your application simply by including its name among the files to be linked when
you invoke the linker phase of the sdcc.exe executable. In this case, we have included
an initialization library, crtxinit.rel, from the folder defined earlier as LIB_DIR. You
may or may not need to include this library in your own application, depending on which
Z8051 MCU you are working with. See the XRAM Initialization section on page 18 for
more information about that library. Additionally, note in this case that we have specified
the path to this particular library. If you prefer, you can also use the -L <library-
path> option to indicate where to find a separate library.

The linker flags (LFLAGS) string that is defined in the first part of the batch file is used to
define the options for the linker step. In addition to the led_blink hex output file, the

Table 1. Intermediate Files Upon C Module Compilation

File Description

uarts.adb An intermediate file containing debug information required to create the .cdb
file with the OCD tool.

uarts.asm An assembly source file created by the Compiler.

uarts.lst An assembler listing file.

uarts.rel The object file created by the Assembler that becomes input for the Linker.
PUG003305-1112 Page 15 of 55

Z8051 Tools
Product User Guide
Linker will also create the updated assembler listings (i.e., the .rst files) discussed previ-
ously; see Table 2.

Completion

The final line of the batch file simply pauses execution before the batch file exits. This ele-
ment can be useful toward providing you a chance to read the output from the build pro-
cess. When you are prompted to press any key to continue, the execution of the batch file
finishes by closing the console window:

:end
@Echo.
@Echo Hit any key to close this console window. > CON:
@pause > NUL:

Now that we have finished discussing the contents of a basic batch file to build an SDCC
application, we are ready to take up some more intricate topics.

Vector Table Allocation

The Controlling The Memory Map section on page 4 explains why the Linker should be
instructed to avoid placing executable code in the address space used by the interrupt vec-
tor table. In the SDCC tools, this instruction can be set by providing at least a dummy ISR
for the final interrupt in the vector table; i.e., the interrupt with the lowest priority and
highest vector address that is defined for your particular MCU. For the Z51F0811, for
example, this final interrupt is external interrupt 7, which has interrupt number 31 and vec-
tor address 0xFB; see the example in Figure 1 on page 6.

The prototype of this ISR, similar to all ISRs used in the SDCC tools, must either be
placed into the same module that contains the main() function, or be placed into a file
that is included in this module. As a result, the Linker places an entry for this ISR into the
vector table and only begins placing executable code after that vector. Additionally, an
actual definition for the ISR must be provided somewhere in your program, although it
can be empty or can consist only of a RETI or NOP instruction.

Table 2. Output Files Upon Object File Linkage

File Description

led_blink.cdb A file that combines the debug information from all of the source modules.

led_blink.map A file that contains the application’s memory map.

led_blink.mem A file that summarizes memory usage.

led_blink.lk A file that contains summary information about the linking process.

led_blink.omf A file that contains debug information in AOMF or AOMF51 format.

uarts.rst An updated version of the Assembler listing file, created by the Linker.
PUG003305-1112 Page 16 of 55

Z8051 Tools
Product User Guide
Application-Specific Hardware Memory Mapping

As discussed in the Controlling The Memory Map section, in some Z8051 MCUs the
Linker must be told to avoid using a portion of memory that is dedicated to memory-
mapped hardware. In the SDCC tools, you do this by adding commands to the Linker
commands, the LFLAGS in our example batch file. In the example of the Z51F3220
MCUs in which LCD segments are mapped to external data addresses 0x00 to 0x1A, the
following LFLAGS definition accommodates this by beginning the XRAM data space at
address 0x1B:

@rem XData 0-1A is for LCD. Therefore, XRAM must start at 0x1B
Set LFLAGS= --debug --use-stdout --model-large --xram-loc 0x1b --
float-reent -V

Limitations And Oddities Of The SDCC Compiler

A few known, minor limitations of the SDCC Compiler are worth noting. These should
not affect typical embedded applications, for the most part. You will receive compiler
error messages if you try to use the following somewhat obscure features of the C lan-
guage:

• SDCC does not support the standard C data type long double

• SDCC does not support the standard C syntax for wide characters, L'c' or L"string"

• SDCC has difficulty with redefined struct or union names in an inner scope. For exam-
ple, the following code will fail:

struct myStruct
{
int i;
short s;
};

void main()
{
// The following is a new definition
// and will fail
struct myStruct {short s; int i;};
...
}

By default, the SDCC Compiler is also generous with its warnings. Some of its warning
messages can be more entertaining than informative, reflecting SDCC’s history as an
open-source software project. For example, one warning that is often safe to ignore1 is dis-
played as:

1. It typically only matters when you should have declared a variable to be volatile, but did not.
PUG003305-1112 Page 17 of 55

Z8051 Tools
Product User Guide
warning 110: conditional flow changed by optimizer: so said EVELYN
the modified DOG

The SDCC documentation refers to this as the (in) famous message. You can disable this
particular message by including the following statement in your code:

#pragma disable_warning 110

A wider range of warning messages can be disabled by using the --less-pedantic
command among your compiler options. This command begins with two dashes. How-
ever, this command is a bit broad in its scope, and disables some warnings that you might
wish to continue seeing. This command is fully described in the SDCC documentation,
which you will find in the sdccman.pdf file located in the following path:

<Z8051 Install>\sdcc_x.y.z\doc\

XRAM Initialization

There is a special setup issue in the SDCC tools which affects those Z8051 MCUs that fea-
ture on-chip XRAM memory. You can determine whether this issue applies to your MCU
by determining whether there is a section titled XRAM (or XSRAM) Memory in the chapter
about memory in the Product Specification. For parts that do not offer XRAM or XSRAM
memory, there is no issue.

However, if your MCU does feature on-chip XRAM or XSRAM memory, there is a
potential problem with the default SDCC setup. Specifically, the default method used for
initializing variables in that memory space may not work properly. The default initializa-
tion used by the SDCC tools uses 8-bit addressing, which will not work if you have over
256 bytes of variables in this space that must be initialized. Instead, you must set up the
SDCC tools to use the alternative dual-pointer method for initializing your XRAM data.

Zilog recommends that the dual-pointer method always be used for initializing XDATA,
even if you have less than 256 bytes of such data. This approach is safer because, as your
program grows over time and you add more initialized data, your application would sud-
denly stop working with no warning when the 256-byte limit is exceeded.

Zilog has provided a modified version of the initialization library, ctrxinit.rel, which
performs this dual-pointer initialization for you. To use this modified library, you simply
need to include the ctrxinit.rel file in the link step of your batch file.

The ctrxinit.rel file is located in the following path:

<Z8051 Install>\lib\sdcc\

The sample batch file discussed above shows an example of how to include this file.
PUG003305-1112 Page 18 of 55

Z8051 Tools
Product User Guide
Debugging With The Z8051 OCD Debug Tool

One way in which the SDCC tools fall short of being a full, integrated development plat-
form is that they cover only the build aspect of program development, not the debug side
(except that they do create files with debug information that can be used by a debug tool).
To download, run, and debug your application, you must use a separate tool. The Z8051
OCD (On-Chip Debugger interface) tool is available for these purposes. Please refer to the
Z8051 OCD User Manual (UM0240) for information about using this tool.

Directory Restrictions

We have referred above to a feature of the OCD Debug Tool which has an impact on how
we choose to place particular files involved in our build into a given folder. Specifically,
the debugger must find both the source code files and also some files that are created in the
build, such as the debug information and the object and hex files, in the same directory. It
is for these reasons that, in the batch file discussed above, we chose not to use the OUTDIR
string to define a separate output folder for the products of the build process, and to use the
clean.bat batch file in every fresh build to delete old and extraneous files from the
folder in which the batch file and source code are located.

Endianness

Another feature of this debug tool that you must be aware of when working with the
SDCC tools is the issue of endianness; search the Internet for this term if you are not
familiar with the concept. Briefly, the question concerns the byte order in which values are
stored in memory. As an example, in the Z8051 both the SDCC and Keil compilers define
an int to be a 2-byte value. Suppose you have an int variable, x, for which the value is
0xaabb; this value is stored in memory at addresses 0x62–0x63. In a big-endian system,
the value 0xaa would be stored at address 0x62 and the value 0xbb would be stored at
address 0x63. In a little-endian system, these would be reversed: 0xbb would be stored at
address 0x62 and 0xaa would be stored at address 0x63. Either system is valid as long as
it is followed consistently.

The specific issue in the OCD is that SDCC uses little-endian storage, but the OCD fol-
lows the convention of the Keil tools which use big-endian storage. This means that the
bytes will be reversed whenever you use the OCD global or local watch window to display
a value longer than one byte. In the case described above, the OCD will show the value of
x as 0xbbaa, when its true value is 0xaabb. You must keep this issue in mind and men-
tally reverse the bytes as you work on debugging your code.

Figure 4, from the Z8051 OCD Debug Tool, shows an example of the OCD watch window
in which the bytes in variable x are reversed due to the SDCC’s use of the little-endian
convention.
PUG003305-1112 Page 19 of 55

Z8051 Tools
Product User Guide
In Figure 4, the least-significant byte of x is stored at the lower address.

More information about the SDCC tools is provided in the SDCC material in your Z8051
software installation. You should refer to that documentation for answers to the more in-
depth questions that may arise as you explore the tools. You will find this information in
the sdccman.pdf file, which is located in the following path:

<Z8051 Install>\sdcc_x.y.z\doc\

Another document to consider is the asxhtm file, which describes the assembler used in
the SDCC tool chain. This file is located in the following path:

<Z8051 Install>\sdcc_x.y.z\doc\sdas\

Figure 4. Endianness Reversal In SDCC

Note:
PUG003305-1112 Page 20 of 55

Z8051 Tools
Product User Guide
Using The Keil Tools

Keil Software, now a division of ARM Ltd., is a very well-known supplier of high-quality,
widely-accepted development tools in the embedded space. The 8051 processor architec-
ture is one of the many architectures they support. Compared to SDCC, the Keil tools for
8051 chips often provide superior performance in metrics such as generated code size, and
also offer IDE support which makes use of the tools considerably easier.

You must not use the Keil tools and software in a manner inconsistent with any license
agreement that you may have with Keil. Zilog is not responsible for any such use by you
in violation of any license agreement you may have with Keil. ZILOG DISCLAIMS
ALL WARRANTIES, INCLUDING WARRANTIES FOR MERCHANTABILITY
AND/OR FOR A PARTICULAR PURPOSE.

Keil offers a restricted-usage subset of their 8051 tool chain, which is freely available for
download from their website at www.keil.com. This subset is nearly identical to the tools
that provide full support for 8051 projects, except for a rather strict limitation on the size
of the application that can be built. Therefore, the free download version is appropriate for
evaluating and learning the Keil tools, but will probably not be a viable path to developing
real applications. This document, however, concentrates primarily on this free version of
the Keil tools, because users are very likely to try evaluating the tools before they buy, and
it is in this phase of tool evaluation in which guidance can be helpful.

This section discusses the following topics:

• How to build an application with the Keil tools

• How to solve memory mapping issues (vector table allocation and hardware memory
mapping) with the Keil tools

• Potential pitfalls when building with the Keil tools

• Debugging a Keil-compiled application with the Z8051 OCD Debug Tool

• Where to find further information about the Keil tools

The first step in getting started with the Keil 8051 evaluation tools is to go to their website
and download them. The tools you must download are the C51 Development Tools; as
discussed above, C51 is Keil’s name for their 8051 C Compiler (and, in some contexts,
their associated tools for the 8051). You can install these tools wherever you prefer on
your PC. If you choose a typical installation, your installation will store a large number of
files and folders on your PC. The most important of these files are listed in Table 3.

Caution:
PUG003305-1112 Page 21 of 55

http://www.keil.com/

Z8051 Tools
Product User Guide
Building Your Application With Keil Tools

The Writing Your Code: Notes About Header Files section on page 2 applies equally to the
Keil tools as it did to the SDCC tools, and is therefore not repeated in this section.

After you have written some code, the steps to build it are the same as they are for the
SDCC (or for any tools): first compile (or assemble, if assembly code) the individual mod-
ules, then link them into a complete application. However, the uVision IDE makes these
tasks a good deal easier. The steps in building your application are all performed via the
GUI. Basically, they are:

• Create a Project and populate it with your source code files

• Set the correct project options

• Click a button to build the project (i.e., compile and link it)

In reality, there is much more complexity involved, most of it hidden in the term the cor-
rect project options. In this section, we examine the most important points to know about
getting successful builds with the free Keil evaluation tools.

This section discusses the following topics:

• How to enable and select your Z8051 MCU in the uVision IDE

• The Project concept in uVision

• Source code in a uVision Project

• Building an existing Project

• Creating a new Project

• Project options and how to avert potential problems

The uVision Project

Now you’re ready to start up uVision, either by selecting it from your Start menu (if a
shortcut was installed there when you installed the Keil tools) or by navigating to the
<Keil install>\UV4 path and double-clicking the UV4 application. As in most other
IDEs, a basic concept in uVision is the Project, which groups together all of the resources
required for building one application. It is easy to create a new project from scratch, and

Table 3. Important C51 Development Tools

File Description

Uv4.exe The uVision4 Integrated Development
Environment in which you will do your builds.

C51 The 8051 C Compiler.

A51 The 8051 Assembler.

BL51 The 8051 Basic Linker.
PUG003305-1112 Page 22 of 55

Z8051 Tools
Product User Guide
we’ll get to that procedure soon. However, let’s start by examining a project that has
already been created for you and included in your Zilog software installation.

Because of the code size restriction of the free Keil tools, you must work with a fairly
small application. The led_blink application for the Z51F0811 MCU is included in the
Zilog installation for just this purpose. This application simply blinks a set of colored
LEDs in sequence if you run it on the board that is included in the Z51F0811 MCU Evalu-
ation Kit. If you do not have this kit, you will not be able to actually run the application,
but you can still build it using the Keil evaluation tools which will start to give you a feel
for using them.

1. In uVision, click Project → Open Project, then navigate the following path:

<Z8051 Install>\samples\Z51F0811\Led_Blink

2. Locate and select a uVision project file called led_blink.uvproj, and click Open.
In the left-hand pane of the IDE, an item called led_blink appears with a plus sign
icon ([+]) next to it, as shown in Figure 5. This top-level led_blink entity is what
uVision calls a target; i.e., the ultimate entity that will be built. You can think of this
target as representing the executable you will build.
PUG003305-1112 Page 23 of 55

Z8051 Tools
Product User Guide
Selecting Your Z8051 Device

Before building, select your Z8051 MCU as the device that is in use by opening the proj-
ect options for the led_blink target, as follows.

1. Highlight the led_blink item in the left-hand pane of the uVision window. Then,
from the list of menus at the top of the window, select Project → Options for the
led_blink target, as indicated in Figure 6.

Figure 5. Opening The led_blink Project
PUG003305-1112 Page 24 of 55

Z8051 Tools
Product User Guide
If you had highlighted a lower-level item in the left-hand pane, Project → Options for the
led_blink target would not be available from the Project menu, but instead only a more
limited selection such as Project → Options for the main.c file.

The Project Options dialog displays many tabs across the top, and a great variety of
options are available to control your build. We’ll explore a few of these in more detail
later.

2. Click the Device tab. In the Database drop-down menu, select Zilog, as indicated in
Figure 7.

Figure 6. Selecting The Project Options

Note:
PUG003305-1112 Page 25 of 55

Z8051 Tools
Product User Guide
3. In the left-hand pane, click to expand the list of Zilog parts, as shown in Figure 8. All
of the Z8051 Family processors are listed; simply select the pertinent processor with
which you will build your application, and click OK.

Figure 7. Selecting The Zilog Database
PUG003305-1112 Page 26 of 55

Z8051 Tools
Product User Guide
Project Source Code

Now we’ll return to preparing to build the project; observe the following procedure.

1. Click the [+] box next to led_blink in the left-hand uVision pane.

2. Open the item labeled Source, which represents all of the source code for the project.
Click again on the plus sign icon [+] to reveal the three source code files that have
been placed into this project. These files are startup.a51, main.c, and usarts.c,
as shown in Figure 9.

Figure 8. Selecting The Z8051 Part
PUG003305-1112 Page 27 of 55

Z8051 Tools
Product User Guide
The startup.a51 file is 8051 assembly code provided by Keil which sets up the C envi-
ronment. Start-up code such as the startup.a51 file is always necessary in C applica-
tions that run in an embedded environment in which there is no desktop-style operating
system, although the start-up code is not always explicitly shown as part of a project by all
development tool sets.

The start-up module provides essential support that enables your compiled C code to be
linked into a working executable. This code usually is not required to be modified unless
you use a particularly customized memory mapping in your application.

The two C source code files, main.c and uarts.c, define this particular application.
Briefly, this program displays a short message to the user, then starts blinking the 3 col-
ored LEDs in a given sequence. If the user presses a key or hits a switch on the board, the
direction of LED blinking reverses (i.e yellow, red, green changes to green, red, yellow or
vice versa).

Note that you can double-click any of the source code files, such as main.c, to display its
source code in the large, right-hand pane of the IDE, in which you can also edit the file;
see Figure 10. Additionally, after you have built the project the first time, a plus sign icon
([+]) is placed next to files such as main.c that include other files; you can click the [+]
icon to view the full list of included header files, and you can double-click any of those in
turn to view or edit the header file contents.

Figure 9. Expanded Source Code
PUG003305-1112 Page 28 of 55

Z8051 Tools
Product User Guide
The Build Step

To build the application in the uVision IDE, all you have to do is to click Project →
Rebuild All Target Files, as indicated in Figure 11. The results of the build are shown in
Figure 12.

Figure 10. Opened Source Code
PUG003305-1112 Page 29 of 55

Z8051 Tools
Product User Guide
Figure 11. Initiating The Build
PUG003305-1112 Page 30 of 55

Z8051 Tools
Product User Guide
The Build Output pane at the bottom of the IDE shown in Figure 12 displays a series of
messages about each of the source code files being assembled or compiled, along with any
error or warning messages; in this case, you should receive no such messages. The Build
Output pane will next indicate that the application is being linked. If there are no errors or
warnings in the linking process (as would be appropriate in this sample project), it will
then display some data about the size of the compiled program and report that it is creating
the hex file, which is the ultimate output of the build. As is the usual case with IDEs, the
build process is extremely simple, as long as you have set up the project correctly and no
errors occur.

Creating A New Project

If you have not already had a defined project, or want to start a new one, the procedure is
quite simple and is probably familiar from your experience with other IDEs.

1. Begin by selecting Project → New uVision Project, as indicated in Figure 13. The
Create New Project dialog box will appear.

Figure 12. Results Of The Build
PUG003305-1112 Page 31 of 55

Z8051 Tools
Product User Guide
2. In this Create New Project dialog, select or create a directory for your project, then
give your project a name.

3. When prompted whether you want to copy the standard 8051 start-up code into your
project; select Yes to give your project a target (i.e., the executable to be built) called
Target 1, wherein the source code consists of the start-up assembly code module.

4. To add a source code file that already exists to this project, select Project → Manage
→ Components, Environment, Books, as indicated in Figure 14.

Figure 13. Creating A New Project
PUG003305-1112 Page 32 of 55

Z8051 Tools
Product User Guide
5. In the Components, Environment, Books dialog that appears, click the Add Files
button, shown in Figure 15. Navigate your way to your source code, select the file(s),
and click OK.

Figure 14. Adding An Existing File To The Project
PUG003305-1112 Page 33 of 55

Z8051 Tools
Product User Guide
As an alternative or addition to Steps 4 and 5, you may wish to create a brand-new
source code file by selecting File → New…. A new file will be opened with the file-
name Text1. You can change this filename by navigating to File → Save As, then
applying a name with the proper file extension, such as myCode.c. Next, you can
again use Project → Manage to add this new file to your project. You could also
change the name of the target by using Project → Manage → Components, Envi-
ronment, Books, click the first (new target) icon in the Project Targets pane, create a
new target with a different name, then click Set as Current Target.

Project Options

There is much more to explore in the Keil tools than we can hope to cover in this brief
guide. The best way to start digging into these tools is to look at the large number of proj-
ect options, which control all aspects of the build process. To view all options for the
led_blink project, highlight the top-level target, led_blink in this case, in the left-
hand pane. Next, select Project → Options for the led_blink target to display the full
project options dialog box.

It is well worth the time to explore each tab and the options that are offered in this dialog.
Many of these can be familiar to you from other IDEs. We will comment briefly on a cou-
ple of settings that can cause problems that you may not have anticipated as you try to
build some simple projects.

Figure 15. Adding The testcode.c File To The Project
PUG003305-1112 Page 34 of 55

Z8051 Tools
Product User Guide
Potential Trouble Areas

One very important setting when using the free tool set in particular can be found on the
Target tab, under Code ROM Size. For virtually all projects, you must modify this setting
to either Compact or Large. Using the Small setting (which is the default setting if you
start uVision from scratch) almost always results in the following Linker error message:

L121: IMPROPER FIXUP

This error indicates that the Linker is unable to create a linked application within the
Small setting’s very small limit for the entire code space. Figure 16 shows an example of
setting this option.

Another minor quirk of the Keil tools is that it is a bit difficult to obtain a listing of gener-
ated assembly code when building a C project. The solution is to make sure that the
Assembly Code checkbox is selected in the C Compiler Listing panel, as indicated in
Figure 17.

Figure 16. Setting The Code ROM Size To Avoid An Improper Fix-Up Linker Error
PUG003305-1112 Page 35 of 55

Z8051 Tools
Product User Guide
Selecting the Assembly Code checkbox ensures that a listing of the generated assembly
code will be displayed at the end of each <filename>.lst file that lists the C code. That
information can be combined with the Linker listing file (often called a map file in other
tool environments), <target_name>.m51, to determine the actual addresses of modules
and instructions in your linked code, if appropriate. Be sure that you check the box for
Listing → Linker Listing if you want to view that file.

The limitation of the Keil evaluation tools will be seen if you try to build an application
that exceeds the limit of 2K (0x800 bytes) of application code. In this case, the Compiler
and Linker still run and report any error or warning messages that might result from code
errors or improper project options. However, at the end of the linker output, it will display
the following message:

FATAL ERROR L250: CODE SIZE LIMIT IN RESTRICTED VERSION EXCEEDED

As a result of this error, no output hex file will be created.

Figure 17. Ensuring A Generated Assembly Code Listing
PUG003305-1112 Page 36 of 55

Z8051 Tools
Product User Guide
The issue discussed in the XRAM Initialization section on page 18 does not apply when
you are building your application with the Keil tools. By default, the Keil tools use the
safer, dual-pointer method for XRAM initialization.

Vector Table Allocation

The Controlling The Memory Map section on page 4 explains why the Linker should be
instructed to avoid placing executable code in the address space used by the interrupt vec-
tor table. In the Keil tools, this instruction is set using the linker project options, as fol-
lows:

1. Open the Project Options dialog box and click the BL51 Locate tab.

2. Uncheck the Use Memory Layout from Target Dialog box to turn off the default
memory mapping.

3. Set a range for code memory which the Linker can use for normal executable code,
thereby avoiding the vector table.

In the example we examined in the Controlling The Memory Map section, the vector table
must occupy addresses 0x00–0xFD; therefore, 0xFE should be the start address for the
code range. The end address depends on your MCU specifications; check the Z8051 data
sheet for your particular device. For the Z51F0811 MCU, this end address is 0x1FFF.

This address range can be inserted in either the Code Range field or the Code field of the
BL51 Locate tab, as shown in Figures 18 and 19.

Note:
PUG003305-1112 Page 37 of 55

Z8051 Tools
Product User Guide
Figure 18. Vector Table Allocation, Method 1
PUG003305-1112 Page 38 of 55

Z8051 Tools
Product User Guide
Application-Specific Hardware Memory Mapping

As previously discussed, some Z8051 MCUs map special hardware devices into a portion
of the memory map, and you must force the Linker not to use that memory mapped area
for normal data storage. For example, in the Z51F3220 MCUs, LCD segments are mapped
to external data addresses 0x00 to 0x1A .

To manage this issue in the Keil toolset, observe the following procedure.

1. Select the Target → Use on-chip XRAM checkbox, as indicated in Figure 20.

Figure 19. Vector Table Allocation, Method 2
PUG003305-1112 Page 39 of 55

Z8051 Tools
Product User Guide
The Use On-Chip XRAM option is provided for the Z51F3220 MCU, but is not provided
on some other Z8051 MCUs.

2. Click the BL51 Locate tab, then deselect the Use Memory Layout from Target Dia-
log checkbox.

3. Enter a range for acceptable XData addresses, in either the XData range or the XData
fields (see Figure 21), in a manner similar to setting the range for code memory to
exclude the vector table. In this case, the range would start at 0x1B (therefore exclud-
ing the memory-mapped LCD segments) and end at 0x2FF (the extent of XData in the
Z51F3220 memory map).

Figure 20. On-Chip XRAM

Note:
PUG003305-1112 Page 40 of 55

Z8051 Tools
Product User Guide
Debugging with the Keil µVision IDE and Zilog OCD

Zilog’s On-Chip Debugger hardware now fully supports the Keil µVision IDE. Our target
driver is seamlessly integrated with the Keil debugger, allowing Keil C51 users to work
within the µVision4 environment without switching between the Keil compiler and
Zilog’s external OCD software.

The projects discussed in this document have been tested with the Keil µVision IDE
V4.53.0.6 (PK51 Professional Developers Kit) and later versions. To verify the version of
the Keil IDE you are using, choose About µVision... from the Keil Help menu.

Debugger Configuration

In the demo project example that follows, the Z51F0811 MCU-related project is refer-
enced as Demo. Observe the following procedure to run your application with the Zilog
OCD target driver.

Figure 21. XData Range

Note:
PUG003305-1112 Page 41 of 55

Z8051 Tools
Product User Guide
1. Start the Keil µVsion4 IDE.

2. From the Project menu, select Open Project and navigate to the following filepath:

<Installation directory>\Z8051_<version>\samples\Z51F0811\Demo

3. Select the Demo.uvproj file and click Open; see Figure 22.

4. Return to the Project menu and select Options for Target ‘Demo’.

5. In the Options for Target ‘Demo’ dialog that appears, click the Device tab and ensure
that your target is properly selected for your project, as illustrated in Figure 23.

Figure 22. Selecting the Demo Project File
PUG003305-1112 Page 42 of 55

Z8051 Tools
Product User Guide
6. After selecting the target, click the Debug tab and select the Zilog Z8051 Target
Driver from the Use: drop-down menu, as highlighted in Figure 24.

Figure 23. Selecting the Target
PUG003305-1112 Page 43 of 55

Z8051 Tools
Product User Guide
7. Click the Settings button, located to the right of this drop-down menu, to configure
your Debug and Flash options. The Settings dialog is displayed with the Debug
Options tab appearing by default, as shown in Figure 25.

Figure 24. Selecting the Target Driver
PUG003305-1112 Page 44 of 55

Z8051 Tools
Product User Guide
When configuring the appropriate Debug option, be aware of the following conditions:

• Checking the Peripheral continues running option means that the timers used in
your project will run while the processor is stopped by the debugger.

• The Reset at Main option will only work if you have a main file in your project; oth-
erwise you should deselect this option.

8. Click the Flash Options tab. The Flash Options Settings dialog will appear, as shown
in Figure 26. To select the proper options for Flash programming, refer to the
Z51F0811 Product Specification (PS0296).

Figure 25. Configuring the Debug Options

Notes:
PUG003305-1112 Page 45 of 55

http://www.zilog.com/docs/ps0296.pdf

Z8051 Tools
Product User Guide
9. Click OK to exit the Settings dialog.

10. From the Options for Target ‘Demo’ dialog, select the Load Application at Startup
checkbox, as shown in Figure 27, the so that the IDE will download the code upon
connection. There is no need to select or enter an initialization file.

11. Click OK to exit the Options for Target ‘Demo’ dialog.

Figure 26. Configuring the Flash Options

Figure 27. Load Application at Startup Settings
PUG003305-1112 Page 46 of 55

Z8051 Tools
Product User Guide
Run the Debugger

The following procedure uses the Z51F0811 MCU as a debugger configuration example
of how to connect your Z8051 development board to your PC.

1. Using the USB cable supplied in the kit, connect the Zilog OCD Module to the USB
port of the PC.

2. Connect the 10-pin cable to the OCD Module and to the Z51F0811 Evaluation Board,
and ensure that the connection appears as shown in Figure 28.

3. Connect the USB cable to the Z51F0811 Evaluation Board and to the PC. If installing
for the first time, the USB driver will be automatically installed on your PC. For more
details about this driver installation, please refer to the FTDI USB-to-UART Driver
Installation section of the Z51F0811 Evaluation Kit User Manual (UM0242).

4. Start your debugging session by clicking the Start/Stop Debug Session icon, as indi-
cated in Figure 29. A default Windows configuration of the debug session is shown in
Figure 30.

Figure 28. 10-pin Cable Connected to the Z51F0811 Evaluation Board

Figure 29. Beginning a Debug Session
PUG003305-1112 Page 47 of 55

http://www.zilog.com/docs/devtools/um0242.pdf

Z8051 Tools
Product User Guide
The following buttons in the Keil µVision IDE are not supported by the Zilog OCD driver:

To learn more about the full functionality of the Keil µVision IDE, please refer to the Keil
Keil µVision4 IDE documentation.

5. From the Debug menu, select Run, or simply press the F5 key on your Windows key-
board to run the demo project. As a result, LEDs D1, D2 and D3 on the Z51F0811
Evaluation Board will blink in sequence.

6. To stop code execution, select Stop from the Debug menu.

Figure 30. A Default Debug Session

Note:
PUG003305-1112 Page 48 of 55

Z8051 Tools
Product User Guide
7. To stop your debugging session, click the Start/Stop Debug Session icon.

Stand-Alone Flash Programming Using the Keil µVision IDE

Observe the following procedure to program Flash memory without debugging.

1. From the Project menu, open the Options for Target 'your project’, and click the
Utilities tab. In the Use Target Driver for Flash Programming drop-down menu
within the Configure Flash Menu Command pane, ensure that Zilog Z8051 Target
Driver is selected, as indicated in Figure 31.

2. Click the Settings button to change any additional Flash options. The Settings dialog
will appear, as shown in Figure 32.

Figure 31. Selecting A Target Driver For Flash Programming
PUG003305-1112 Page 49 of 55

Z8051 Tools
Product User Guide
3. After you have selected your Flash options, click OK to exit the Flash Options dia-
log.

4. Click OK to exit the Options For Target ‘Demo’ dialog.

5. From the Flash menu of the Keil IDE (see Figure 33), select either of the following
options:

– Select Download to program Flash memory with the current project

– Select Erase to perform a mass erase of internal Flash memory

Figure 32. Configuring Additional Flash Options

Figure 33. The Keil IDE Flash Menu
PUG003305-1112 Page 50 of 55

Z8051 Tools
Product User Guide
For Further Information

Working with the unrestricted, paid version of the Keil tools is very much the same,
except that you have the freedom to build significant real-world applications. For informa-
tion, see the Keil website.

Obviously, there are more details to consider when working with the Keil tools. A large
and well-organized body of information about these tools can be accessed through the
uVision Help menu. You can also access this information without running uVision by
examining the HTML Help files contained in the following path:

<Keil install>\C51\Hlp

Especially helpful are the c51 file about the compiler, the a51 file about the assembler
and the bl51 file that discusses the basic linker.
PUG003305-1112 Page 51 of 55

http://www.keil.com/

Z8051 Tools
Product User Guide
Appendix A. SDCC Build Batch File Listing

This appendix offers a complete listing of the SDCC build batch file that is discussed in
the Using The SDCC Tools section on page 7.

Set SDCC_DIR=..\..\..\SDCC_3.1.0
Set SDCC_BIN=%SDCC_DIR%\bin
Set LIB_DIR=..\..\lib\sdcc
Set OUTDIR=.\Sdcc_out
Set CFLAGS= -c --debug --use-stdout --model-large -V -I"../../../
include/C" -I"../common"
Set LFLAGS= --debug --use-stdout --model-large -V

@echo cleaning intermediate files
@call clean.bat

@echo compiling....
@rem uarts.c
%SDCC_BIN%\sdcc.exe %CFLAGS% -o"."/ ../common/uarts.c
@if errorlevel 1 goto Compiling_Error

@rem main.c
%SDCC_BIN%\sdcc.exe %CFLAGS% main.c
@if errorlevel 1 goto Compiling_Error

@echo linking....
%SDCC_BIN%\sdcc.exe %LFLAGS% -oled_blink.hex main.rel uarts.rel
%LIB_DIR%\crtxinit.rel
@if errorlevel 1 goto Linking_Error

@echo.
@echo Build was complete and successful.
@goto end

:Compiling_Error
@Echo.
@Echo !!
@Echo !!! Compiling Errors occurred. See above !!
@Echo !!
@goto end

:Linking_Error
@Echo.
@Echo !!
@Echo !!! Linking Errors occurred. See above !!
@Echo !!

:end
@Echo.
PUG003305-1112 Page 52 of 55

Z8051 Tools
Product User Guide
@Echo Hit any key to close this console window. > CON:
@pause > NUL:
PUG003305-1112 Page 53 of 55

Z8051 Tools
Product User Guide
DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS.

LIFE SUPPORT POLICY

ZILOG’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE
SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF
THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b)
support or sustain life and whose failure to perform when properly used in accordance with instructions for
use provided in the labeling can be reasonably expected to result in a significant injury to the user. A criti-
cal component is any component in a life support device or system whose failure to perform can be reason-
ably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

Document Disclaimer

©2012 Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications,
or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES
NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE
INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO
DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED
IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED
HEREIN OR OTHERWISE. The information contained within this document has been verified according
to the general principles of electrical and mechanical engineering.

Z8051 is a trademark or registered trademark of Zilog, Inc. All other product or service names are the
property of their respective owners.

Warning:
PUG003305-1112 Page 54 of 55

Z8051 Tools
Product User Guide
Customer Support

To share comments, get your technical questions answered, or report issues you may be
experiencing with our products, please visit Zilog’s Technical Support page at http://sup-
port.zilog.com.

To learn more about this product, find additional documentation, or to discover other fac-
ets about Zilog product offerings, please visit the Zilog Knowledge Base or consider par-
ticipating in the Zilog Forum.

This publication is subject to replacement by a later edition. To determine whether a later
edition exists, please visit the Zilog website at http://www.zilog.com.
PUG003305-1112 Page 55 of 55

http://support.zilog.com
http://support.zilog.com
http://www.zilog.com/kb
http://www.zilog.com/forum
http://www.zilog.com

	Z8051 Tools Product User Guide

	Introduction
	First Steps With Z8051 Tools
	Goal Of This Document
	Conventions Used In This Document

	Writing Your Code: Notes About Header Files
	Family-Specific C Header Files
	Working Around Compiler Compatibility Issues
	Assembler Include Files

	Controlling The Memory Map
	Vector Table Allocation
	Application-Specific Hardware Memory Mapping

	Interrupt Service Routines
	Using The SDCC Tools
	Building Your Application With SDCC Tools
	Running A Batch File
	Defining Paths
	Defining Build Options
	Executing Preliminary Steps
	Compiling Source Code Modules
	Linking
	Completion

	Vector Table Allocation
	Application-Specific Hardware Memory Mapping
	Limitations And Oddities Of The SDCC Compiler
	XRAM Initialization

	Debugging With The Z8051 OCD Debug Tool
	Directory Restrictions
	Endianness

	Using The Keil Tools
	Building Your Application With Keil Tools
	The uVision Project
	Selecting Your Z8051 Device
	Project Source Code
	The Build Step
	Creating A New Project
	Project Options
	Potential Trouble Areas

	Vector Table Allocation
	Application-Specific Hardware Memory Mapping

	Debugging with the Keil µVision IDE and Zilog OCD
	Debugger Configuration
	Run the Debugger
	Stand-Alone Flash Programming Using the Keil µVision IDE
	For Further Information

	Appendix A. SDCC Build Batch File Listing
	Customer Support

