
AN034601-1012
Abstract

This application note describes how to use the UART peripherals in Zilog’s family of
Z8051 MCUs as 1-Wire bus Masters. Also described are the required electrical interface,
the UART settings, the relationship between the UART and 1-Wire signals, and the search
algorithm used to identify multiple slaves. For this application, the following three 1-Wire
slave devices are used to demonstrate the 1-Wire protocol while operating in a multislave
configuration:

• DS18S20: a digital thermometer

• DS2417: a time chip with interrupt

• DS24B33: a 4 KB EEPROM

The source code file associated with this application note, AN0346-SC01.zip, is available
for download from the Zilog website. This source code is compiled using the Small
Device C Compiler (SDCC) version 3.1.0 and tested using Zilog’s Z51F3220 Develop-
ment Kit. For this source code to work properly on other Z8051 MCUs, you may be
required to make minor modifications.

Overview of the 1-Wire Protocol

A 1-Wire bus utilizes a single wire for power and signaling. This bus operates in an open-
drain environment; therefore a pull-up resistor is required. The bus also operates in a
2.0 V–5.5 V range. The communication is asynchronous, half-duplex, and strictly follows
a Master-Slave scheme. Only one Master – and either one or several slave devices –
should be connected on the bus. Only one data bit can be transmitted on the bus for every
time period of at least 60µs.

For more detail about these pull-up resistor values, refer to the documentation that
describes the 1-Wire slave devices you are using. For more information about the Maxim/
Dallas 1-Wire interface, visit Maxim’s 1-Wire Devices page.

Discussion

When using 1-Wire communication, the Master must initiate bit transmission by pulling
the bus Low which, in turn, synchronizes the timing logic of all units. This section dis-
cusses the five basic signals that are significant to a 1-Wire operation and how these sig-

Note:
AN034601-1012
Application Note
Using a Z8051 UART to Implement
a 1-Wire® Master with Multiple
Slaves
 Page 1 of 25

http://www.zilog.com/docs/appnotes/an0346-sc01.zip
http://www.zilog.com/index.php?option=com_product&task=dev_tool_detail&DevToolKit=Z51F3220000ZCOG
http://www.zilog.com/index.php?option=com_product&task=dev_tool_detail&DevToolKit=Z51F3220000ZCOG
http://www.maxim-ic.com/products/1-wire/

Using a Z8051 UART to Implement a 1-Wire® Master with Multiple Slaves
Application Note
nals are generated by the Z8051 UART module. This section also shows the commands
and algorithm used to identify slaves in a multislave 1-Wire setup.

Reset and Presence Signal
A Reset and Presence signal is illustrated in Figure 1. When issuing a Reset signal, the
Master pulls the bus Low for at least 480 µs. If a slave is present, a response will be
received by the Master. This response is called the Presence signal, and it occurs when the
bus is pulled Low by the slave(s) within 60 µs after the Master releases the bus. If the Pres-
ence signal is not received by the Master, the Master will assume that there is no device(s)/
slave(s) present on the bus.

Write Signals
The Write 0 and Write 1 signals are shown in Figure 2. To send a Write 0 signal in the bus,
the Master must pull the bus Low for a period of 60 µs to 120 µs. To send a Write 1 signal
in the bus, the Master must pull the bus Low for 1–15 µs, then release the bus for the
remainder of the time period.

Figure 1. Reset and Presence Timing Diagram
AN034601-1012 Page 2 of 25

Using a Z8051 UART to Implement a 1-Wire® Master with Multiple Slaves
Application Note
Read Signal
A read signal is shown in Figure 3. To execute the read signal, the Master must pull the
bus Low for at least 1 µs. If the slave sends a 0, the slave will hold the bus Low; otherwise
it will release the bus. The bus should be sampled 15 µs after the bus is pulled Low. The
Master reads a 0 if the data line is Low when sampled, and reads a 1 if the data line is
High.

Figure 2. Write 0 and Write 1 Timing Diagram
AN034601-1012 Page 3 of 25

Using a Z8051 UART to Implement a 1-Wire® Master with Multiple Slaves
Application Note
Generating Signals Using the UART
The basic signals discussed earlier in this discussion, when generated using the UART
module on Zilog’s Z8051 MCUs, require both the Transmitter (TXD) and Receiver
(RXD) to be connected to the 1-Wire bus. Additionally, an external open-collector or
open-drain buffer is required to allow the slave devices to pull the bus Low when the
UART output is High. Figure 4 shows a sample buffer made of discrete components.

Figure 3. Read Timing Diagram
AN034601-1012 Page 4 of 25

Using a Z8051 UART to Implement a 1-Wire® Master with Multiple Slaves
Application Note
UART Configuration
For the UART module to communicate with a 1-Wire slave device, it should be config-
ured to read and write a data format of 8 data bits, no parity and 1 stop bit; two baud rates,
9600 bps and 115200 bps, are used. Zilog recommends using an 11.0592 MHz crystal
oscillator as the system clock to effect a zero-percent error on data transmission at the
115200 baud rate.

Reset and Presence Signal
To generate a Reset and Presence signal in the UART, the baud rate must be set to
9600 bps and an F0h byte must be transmitted. If the received byte is equal to the transmit-
ted byte, there is no slave connected or present on the bus. However, if the value of the
received byte ranges from 10h to 90h, one or more slaves are present. See Figure 5.

Figure 4. Sample Open-Collector Buffer Circuit
AN034601-1012 Page 5 of 25

Using a Z8051 UART to Implement a 1-Wire® Master with Multiple Slaves
Application Note
Write 0 and Write 1 Signals
Write 0 and Write 1 signals are shown on Figure 6. Using a baud rate of 115200 bps, the
UART transmitter must send 00h for a Write 0 and FFh for a Write 1.

Read Signal
Using a baud rate of 115200 bps, a read signal is generated using the UART module by
transmitting FFh on the bus. The start bit produced by the UART tells the slave(s) that the
Master is performing a read operation. If the slave should transmit a 0 bit, the slave must
pull the line Low until the Master has finished sampling the LSB. If the slave did not pull
the line Low, the Master will read a 1. Figure 7 illustrates the read signal in the UART.

Figure 5. Reset and Presence Signal in the UART

Figure 6. Write 0 and Write 1 Signals in the UART
AN034601-1012 Page 6 of 25

Using a Z8051 UART to Implement a 1-Wire® Master with Multiple Slaves
Application Note
ROM Commands
All 1-Wire devices feature a unique 64-bit stored identifier in ROM. This identifier is used
to facilitate addressing of each devices connected on the bus, and is divided into three
parts. The first 8 bits represent the family code, the next 48 bits are for the serial number,
and the final 8 bits are a CRC computed from the preceding 56 bits.1 The ROM commands
listed in Table 1 are used to operate within this 64-bit ROM space.

Search Algorithm
A search algorithm is very important to a 1-Wire system that involves multiple slaves. If
the ROM numbers of the slave devices on a 1-Wire network are not known, they can be
discovered by using a search algorithm. By using this particular algorithm, the MCU can
easily address which specific slave device it will communicate with. Table 2 shows the
events that occur in the search algorithm.

Figure 7. Read Signal in the UART

1. CRC computation is outside the scope of this document.

Table 1. ROM Commands

Command Code Purpose

SEARCH ROM F0h Identify all contents of the slave’s 64-bit ROM.

MATCH ROM 55h Communicate to a specific device.

READ ROM 33h Identification.

SKIP ROM CCh Skip addressing.

OVERDRIVE SKIP ROM 3Ch Overdrive version of SKIP ROM.

OVERDRIVE MATCH ROM 69h Overdrive version of MATCH ROM.
AN034601-1012 Page 7 of 25

Using a Z8051 UART to Implement a 1-Wire® Master with Multiple Slaves
Application Note
The events listed in Table 2 will repeat until the 64th bit of the slave’s ROM number is
found. Upon examination of Table 3, it becomes evident that if all of the participating
devices show the same value in a particular bit position, then there is only one direction
that the path can branch to.

A condition in which zeroes exist in a bit position can be termed a discrepancy; this dis-
crepancy can be the key to finding devices in subsequent searches. On the first pass, the
search algorithm specifies that when there is a discrepancy (bit/complement = 0/0), the 0
path is taken.

Another algorithm could be devised to use the 1 path first. The bit position for the last
(previous) discrepancy is recorded for use in the next search. Table 3 describes the paths
that are taken on subsequent searches when a discrepancy occurs.

When considering which search algorithm to employ when using three slave devices, let
us first assume devices with a 2-bit ROM number only, as indicated in Figure 8.

Table 2. Master and Slave Activity in the Search Algorithm

Master Slave(s)

1-Wire reset Responds with a presence pulse.

Write search command Readies for search.

Read bus for 'AND' first bit Each slave sends bit 1 of its ROM number.

Read bus for 'AND
complement bit

Each slave sends the complement of the bit 1 of its ROM number.

Master writes bit 1 direction
on the bus

Each slave receives the bit written by the Master, if bit read is not the same
as bit 1 of its ROM number then the Slave goes into a wait state.

Table 3. Search Path Direction

Search Bit Position vs.
Last Discrepancy Path Taken

= Take the '1' path

< Take the same path as last time (from the last ROM number found)

> Take the '0' path

Note:
AN034601-1012 Page 8 of 25

Using a Z8051 UART to Implement a 1-Wire® Master with Multiple Slaves
Application Note
The FIRST Operation

The search begins when the Master issues a Reset; all slave devices will respond for pres-
ence detection. The Master then sends the search command to the slaves; the search for the
first device will follow. This search is also known as the FIRST operation.

Figures 9 through 11 present simple search examples using three slave devices. Figure 9
shows the FIRST operation, which searches on the 1-Wire bus for the first device. Upon
initialization, Last Discrepancy is set to 0. The Master will initiate a read operation, and
the slaves will respond by sending Bit 1 of their two-bit ROM number. The Master reads 0
(an AND of all of the slaves’ Bit 1 data). The Master next initiates a read operation, and
the slaves send the Master’s Bit 1 complement. The Master reads a 0 (an AND of the bits
sent by the slaves). The Master then evaluates the two bits (that were sent by the slaves)
for path direction. Because the Master has received zeroes in each of these two bits, a dis-
crepancy occurs. Looking at Table 3 on page 8, the Master should send a 0 because the bit
position is 1 and is therefore greater than the discrepancy, which is 0.

Figure 8. 2-Bit Sample Slave ROM Number

Figure 9. FIRST Operation to Find First Slave
AN034601-1012 Page 9 of 25

Using a Z8051 UART to Implement a 1-Wire® Master with Multiple Slaves
Application Note
The slaves will go into a wait state when their Bits 1 are not 0. The remaining active slave,
which we’ll call Slave B, should show 0 in Bit 1. The Master then initiates a read opera-
tion for Bit 2, and Slave B clears Bit 2 to 0. The Master reads Bit 2 from Slave B and rein-
itiates a read for the complement bit. The Master receives a 1; the bits received by the
Master are 0 and 1. The Master then sends a 0, once again being the only direction that the
path can branch to. The FIRST operation is now complete.

As a result, the identified bits are 00, which is the ROM number of Slave B. The first slave
device found is B. Last Discrepancy is set to 1, because the discrepancy occurs only once
in the first search.

The NEXT Operation

After finding the first device, the NEXT operation will occur, in which the search algo-
rithm is executed a second time to search for the next device. The NEXT operation is usu-
ally performed after a FIRST operation or another NEXT operation; the state essentially
remains unchanged from the previous search and before performing another search. See
Figures 10 and 11.

Figure 10. NEXT Operation To Find Second Slave
AN034601-1012 Page 10 of 25

Using a Z8051 UART to Implement a 1-Wire® Master with Multiple Slaves
Application Note
Hardware Implementation

This section discusses the physical interface between the Z8051 MCU and the 1-Wire
slave devices, and how the Z8051 MCU is configured and programmed to write and read
data effectively over a 1-Wire bus with three slave devices.

For this application, a Z51F3220 MCU is used as a Master while DS18S20, DS24B33 and
DS2417 are used as slaves.

As shown in Figure 12, TXD1 is connected to the open-collector buffer circuit that con-
sists of resistors and NPN transistors. This circuit enables the slaves to pull the line Low
when the UART is in an idle state.

Figure 11. NEXT Operation To Find Last Slave
AN034601-1012 Page 11 of 25

Using a Z8051 UART to Implement a 1-Wire® Master with Multiple Slaves
Application Note
In an ideal situation, a 1-Wire device will obtain its power and its as data in a single bus.
However, some devices require additional current that may cause an unacceptable voltage
drop across the weak 1-Wire pull-up resistor or require more current than can be supplied
by the bus. For this reason, the DS18S20 and DS2417 slaves are powered by an external
voltage supply, while the DS24B33 slave is the only one powered by the 1-Wire bus. The
current in the 1-Wire bus is sufficient to power-up the DS24B33 slave during read and
write operations.

Software Implementation

The required peripherals and oscillator must first be initialized; the brief routine that fol-
lows shows the order of initialization.

void Init(void)
{

//Initialize Ports

Figure 12. MCU and Slave Connection
AN034601-1012 Page 12 of 25

Using a Z8051 UART to Implement a 1-Wire® Master with Multiple Slaves
Application Note
PORT_Init();

// Initialize System Clock
InitOscillator();

// Initialize UART
InitUart();

}// Init

The ports/pins that are used for the UART and System Clock must be configured. P20 and
P10, P40 and P41 are configured to use their alternate functions as UART1 and UART0,
respectively. P50 and P51 are configured as XOUT and XIN.

void PORT_Init (void)
{

// Initialize port to use Sub functions.
P1FSRL = RXD1EN;
P2FSRL = TXD1EN;
P4FSR = (RXD0EN | TXD0EN);

// XTAL Function
P5FSR = (XIN | XOUT);

}// PORT_Init

Next, the MCU is configured to use the Main External Oscillator, running at 11.0592
MHz. The proper initialization for the oscillator is to set the OSCCR Register before set-
ting the SCCR. Not performing this initialization sequence causes the oscillator to work
only when the OCD is hooked up, and not when it is unplugged.

void OSC_Init (unsigned char OSCCRval,
unsigned char SCCRval)

{
OSCCR = OSCCRval;
SCCR = SCCRval;

}// OSC_Init

The final part of the initialization is to configure how the UART will operate. The routine
that follows shows how the UART is configured.

void InitUart (void)
{

UART_Init(UART0,
FREQUENCY,DEFBAUD,
(UART_MODE | NOPARITY | USIZE8),
(RXCIE | TXE | RXE |USIEN),
~(MASTER|LOOPS|DISXCK|USISSEN|FXCH0|USISB|SITX8|
USIRX8));
AN034601-1012 Page 13 of 25

Using a Z8051 UART to Implement a 1-Wire® Master with Multiple Slaves
Application Note
UART_Init(UART1,
FREQUENCY,
DEFBAUD,
(UART_MODE|NOPARITY|USIZE8),
(TXE | RXE | USIEN),
~(MASTER|LOOPS|DISXCK|USISSEN|FXCH0|USISB|USITX8| USIRX8));

}// InitUart

UART0 is configured with an initial baud rate of 9600, 8 data bits, no parity and 1 stop bit.
UART1 is configured with a baud rate of 9600, 8 data bits, no parity, and with RXD1 set
to operate in interrupt mode.

1-Wire Communication-Related Functions
In this application, all functions related to 1-Wire communication are written in the
Z511WireComm.c file. Table 4 shows the functions used in a 1-Wire communication.

Table 4. 1-Wire Communication-Related Functions

Function Name Description

OW_SendDataBit (unsigned char TxBit) Sends FFh in the bus if the TxBit is 1, 00h if it is 0. No return
value.

OW_GetDataBit (void) Gets the bit sent by the slave(s). Returns 1 if the received
byte in RXD1 is 0xFF; otherwise, returns 0.

OW_ClearUSI1ST1 (void) Clears the USI1ST1 Register of UART1. This action is
particularly significant because RXD1 is tied to TXD1.

OW_SendDataByte(
unsigned char* DataByte,
unsigned char NumberOfBytes)

Sends bytes of data in the bus. This data is contained in the
array, and the number of bytes to send is defined by the
second passed parameter. Uses the OW_SendDataBit
function to send these bytes one bit at a time. No return value.

OW_GetDataByte(
unsigned char* DataByte,
unsigned char NumberOfBytes)

Calls the OW_GetDataBit to get the bits sent by the slaves:
these bits are arranged to form a byte which will then be
stored in an array. The value of the second parameter
determines how many bytes to get.

OW_SendFunctionCommand (
unsigned char Command)

Sends the function command to the slave devices.

OW_SendROMCommand (
unsigned char Command)

Sends the ROM command to the slave devices.

OW_SendROMCode(
unsigned char* ROMCodes,
unsigned char DeviceNumber)

Sends the 64-bit ROM number of the slave identified via the
device number parameter. The 64-bit ROM number is
contained in the array.

OW_GetFamilyCode (
unsigned char* ROMCodes,
unsigned char DeviceNumber)

Extracts the 8-bit family code from the ROM codes contained
in the array. The corresponding family code required to
extract is identified via the device number parameter. Returns
the family code extracted.
AN034601-1012 Page 14 of 25

Using a Z8051 UART to Implement a 1-Wire® Master with Multiple Slaves
Application Note
DS18S20 Operation-Related Functions
One of the slaves used in this application is the DS18S20 device, which is a digital ther-
mometer that uses a single bus for data and power. The next routine, ds18s20_GetTemp,
shows how to get data from this DS18S20 slave.

void ds18s20_GetTemp (unsigned char *ds18s20ROMCode,
 unsigned char *ds18s20Data,
 unsigned char SlaveNumber)

{
unsigned char ds18s20_Loop = 0;
//Issue Reset and Presence Sequence
while (! OW_Reset ());
//Send ROM Command Match ROM
OW_SendROMCommand (OWMATCHROM);
//Send 64-bit ROM Code
OW_SendROMCode (ds18s20ROMCode, SlaveNumber);
//Send Function Command Convert Temperature
OW_SendFunctionCommand (DS18S20CONVERTT);
// Strobe for DS18S20 Response
while ((OW_GetDataBit ()) == 0)
//Delay
for (ds18s20_Loop = 0; ds18s20_Loop <10; ds18s20_Loop)
//Issue Reset and Presence Sequence
while (! OW_Reset ());
//Send ROM Command Match ROM
OW_SendROMCommand (OWMATCHROM);
//Send 64-bit ROM Code
OW_SendROMCode (ds18s20ROMCode, SlaveNumber);
//Send Function Command
OW_SendFunctionCommand(DS18S20READSCRATCHPAD);
// Read DS18S20 Scratch Pad for Temperature
OW_GetDataByte(ds18s20Data, DS18S20TEMPBYTES);
// Reset
while (! OW_Reset ());

}// ds18s20_ConvertTemp

OW_Reset (void) Sends the Reset signal to the slave devices and waits for the
Presence signal from the slave devices. Returns 1 if
successful; 0 otherwise.

OW_Search(unsigned char* ROMCodes) Performs the Search algorithm, then saves the 64-bit ROM
numbers identified into an array and returns the number of
devices found.

Table 4. 1-Wire Communication-Related Functions (Continued)

Function Name Description
AN034601-1012 Page 15 of 25

Using a Z8051 UART to Implement a 1-Wire® Master with Multiple Slaves
Application Note
The function gets two bytes of data from the DS18S20 slave; the first byte contains tem-
perature data. This data should be divided by two to get the temperature value (hex) in
Celsius. The second byte is the sign byte. If this byte is equal to 00h, the temperature is
positive. If this byte is instead FFh, the temperature is negative. This two-byte information
is then stored in an array passed to the function from the main program. Figure 13 shows
the two-byte data output that DS18S20 device will provide during a read operation.

DS2417 Operation-Related Functions
The DS2417 device is a 1-Wire time chip with an interrupt featuring a one-second resolu-
tion, 32-bit binary counter. This slave outputs six bytes of data when it receives a read
command; the first byte represents device control and the remaining five bytes represents
clock data. Figure 14 shows the device control byte of the DS2417 device.

The routine that follows shows how the control byte and clock are being set to their appro-
priate values. The control byte is set to enable the 32.768 KHz oscillator, which is con-
nected to Pin 5 and Pin 6. The clock is next set to 0 by issuing a function command and
sending four bytes of data which are all zeroes.

void ds2417_SetClock(unsigned char *ds2417ROMCode,
 unsigned char SlaveNumber)

{
unsigned char ds2417_Loop;
unsigned char ds2417_Data[4];

Figure 13. Temperature Register Format

Figure 14. DS2417 Device Control Byte
AN034601-1012 Page 16 of 25

Using a Z8051 UART to Implement a 1-Wire® Master with Multiple Slaves
Application Note
// Reset
while(!OW_Reset());

// Send ROM Command Match ROM
OW_SendROMCommand(OWMATCHROM);
// Send 64-bit ROM Code
OW_SendROMCode(ds2417ROMCode,SlaveNumber);
// Send Function Command Set Clock

OW_SendFunctionCommand(DS2417SETCLOCK);
// Write Control Register First

ds2417_Data[0] = DS2417CTRLBYTESET;
OW_SendDataByte (ds2417_Data, 1);

// Write 0x00000000
for(ds2417_Loop = 1;
ds2417_Loop < DS2417TOTALBYTES;
ds2417_Loop++)
{
ds2417_Data[ds2417_Loop] = DS2417DEFAULTTIMESET;
}// for

OW_SendDataByte (ds2417_Data,(DS2417TOTALBYTES - 1));
// Reset

while(!OW_Reset());
 }// ds2417_SetClock

To get data from DS2417 a function command is also sent to the
Slave. Then the Master initiates the read. The DS2417 will
transmit the content of Control Register and information in
the real-time clock counter. The following routine shows how
the five-byte data is obtained

void ds2417_GetTime(unsigned char *ds2417ROMCode,
unsigned char *ds2417Data,
unsigned char SlaveNumber)
{
// Reset
while(!OW_Reset());

// Send ROM Command Match ROM
OW_SendROMCommand(OWMATCHROM);
// Send 64-bit ROM Code
OW_SendROMCode(ds2417ROMCode,SlaveNumber);
// Read Clock
OW_SendFunctionCommand(DS2417READCLOCK);
// Get Bytes
OW_GetDataByte(ds2417Data,DS2417TOTALBYTES);

// Reset
while(!OW_Reset());
}// ds2417_GetTime
AN034601-1012 Page 17 of 25

Using a Z8051 UART to Implement a 1-Wire® Master with Multiple Slaves
Application Note
These five bytes of data are then stored to the array passed to the function from the main
program.

DS24B33 Operation-Related Functions
The DS24B33 slave is a 512-byte, 1-Wire EEPROM device. Data can be written, read, or
erased in this device simply by using the 1-Wire protocol. Table 5 shows all of the func-
tions used to communicate with this slave.

Table 5. DS24B33 Operation-Related Functions

Function Name Description

ds24b33_WriteEEPROM(
unsigned char* ds24b33ROMCode,
unsigned char* ds18s20DataTemp,
unsigned char* ds2417DataTime,
unsigned char* ds24b33Address,
unsigned char* ds24b33EndingAddress,
unsigned char SlaveNumber)

Writes DS18S20 and DS2417 data to the EEPROM.

ds24b33_ReadEEPROM(
unsigned char* ds24b33ROMCode,
unsigned char SlaveNumber)

Reads the EEPROM.

ds24b33_EraseEEPROM(
unsigned char* ds24b33ROMCode,
unsigned char SlaveNumber)

Erase the EEPROM's contents; technically, write FFh to the
entire contents of memory.

ds24b33_CopyScratchPad(
unsigned char* ds24b33ROMCode,
unsigned char SlaveNumber)

Sends a copy scratchpad function command to the slave,
then sends the following three bytes of data as an
authorization code: a two-byte target address and one byte
for the ending address/data status.

ds24b33_WriteScratchPad(
unsigned char* ds24b33ROMCode,
unsigned char* ds24b33Address,
unsigned char* ds24b33EndAddress,
unsigned char SlaveNumber)

Sends a write scratchpad function command that writes the
thirty-two-page scratchpad.

ds24b33_ReadScratchPad(
unsigned char* ds24b33ROMCode,
unsigned char SlaveNumber)

Reads the scratch pad.

ds24b33_TxData(
unsigned char* ds24b33_DataCont1,
unsigned char* ds24b33_DataCont2)

Arranges the required data to write to the EEPROM,
combining the data from DS18S20 and DS2417 into one
array.
AN034601-1012 Page 18 of 25

Using a Z8051 UART to Implement a 1-Wire® Master with Multiple Slaves
Application Note
Equipment Used

This section provides a complete list of the hardware and software requirements for this
application.

Hardware
The hardware tools used to develop this 1-Wire application are listed in Table 6.

Software
The software tools used to develop this 1-Wire application are:

• Zilog Z8051 On-Chip Debugger version 1.147

• SDCC v 3.1.0

• AN0346-SC01.zip, containing the project file and source codes.

• HyperTerminal or any equivalent communications and terminal emulation program.

Documentation
The following documents are each associated to the Z8051 MCU and/or are available free
for download from the Zilog website.

• Z51F3220 Product Specification (PS0299)

• Z51F3220 Development Kit User Manual (UM0243)

• Z8051 Tools Product User Guide (PUG0033)

Table 6. Application Hardware

Description Quantity

1.5 KΩ resistor 1

100 KΩ resistor 1

10 KΩ resistor 1

2N2222A, NPN Transistor 2

DS18S20, 1-Wire Digital Thermometer 1

DS24B33, 1-Wire 4Kb EEPROM 1

DS2417, 1-Wire Real Time Clock with Interrupt 1

32.768 KHz, Crystal Oscillator 1

Connecting wires 4

Z51F3220 Development Kit 1

11.0592 MHz Crystal Oscillator 1

USB-to-USB Mini Connector 1
AN034601-1012 Page 19 of 25

Using a Z8051 UART to Implement a 1-Wire® Master with Multiple Slaves
Application Note
Testing/Demonstrating the Application

This section discusses a methodology for demonstrating this application and testing the
software.

Hardware Setup
Observe the following procedure to set up the hardware.

1. Set up the open-collector buffer/driver on a protoboard; see Figure 4 on page 5 for ref-
erence.

2. Connect Pin 3 of the DS18S20 device and Pin 4 of the DS2417 device to VCC.

3. Connect Pin 5 of the DS18S20 device and Pin 4 of the DS2417 to GND.

4. Connect Pin 4 of the DS18S20 device, Pin 3 of the DS24B33 device, and Pin 2 of the
DS2417 device to the output of the buffer.

5. Connect the 32.768 KHz crystal oscillator to pins 5 and 6 of the DS2417 device.

6. Connect the VCC of the buffer to J12, and connect the GND of the buffer to J13 on the
Development Board.

7. Connect RXD1 (Pin 6 of J16) directly to the one-wire bus, and connect TXD1 (Pin 8
of J16) to the open-collector buffer. Jumpers should be placed in J16 pins 1–2 and 3–
4. The following four wires must be connected between the Z51F3220 Development
Board and the protoboard: VCC, Ground, RXD1 and TXD1.

8. Replace the default 12 MHz crystal (Y1) on the Z51F3220 Board with an
11.0592 MHz crystal oscillator.

9. Connect the Zilog USB 2.0 OCD to J1 of the Z51F3220 Board.

10. To provide power to the Development Board, insert the USB connector into Port P1 of
the Z51F3220 Board, and connect the other end of this cable to the PC.

Software Configuration
Observe the following procedure to correctly compile, load and run the software.

1. Download the AN0346-SC01.zip file from the Zilog website and unzip it to your PC’s
hard drive.

2. From the Windows Start menu, launch a command prompt. Browse to the AN0346-
SC01 folder and open the Sdcc file contained inside it; see Figure 15.
AN034601-1012 Page 20 of 25

http://www.zilog.com/docs/appnotes/an0346-sc01.zip

Using a Z8051 UART to Implement a 1-Wire® Master with Multiple Slaves
Application Note
3. Run the build_sdcc batch file to compile and link to the source code; see Figure 16.

4. As indicated in Figure 17, you should see a confirmation that the program has success-
fully compiled and linked. A hex file has now been created and it is located in the
Sdcc directory.

Figure 15. Opening the AN0346-SC01 Files within the Command Prompt

Figure 16. Running the Build Script

Figure 17. Build Notification
AN034601-1012 Page 21 of 25

Using a Z8051 UART to Implement a 1-Wire® Master with Multiple Slaves
Application Note
5. Next, launch the Zilog Z8051 OCD 1.147 software application to load the hex file to
the MCU. For detailed instructions about loading a hex file, refer to the Z8051 Tools
Product User Guide (PUG0033).

6. Disconnect the USB-to-USB mini cable and disconnect the OCD. Then, reconnect the
USB-to-USB mini cable to the Z51F3220 Development Board to power it up.

7. After loading the hex file to the MCU, configure the terminal emulation program;
HyperTerminal or an equivalent program can be used. Configure the terminal emula-
tor to the following settings:

– 9600 baud

– 8 data bits

– No parity bits

– 1 stop bit

– No flow control

8. Reset the MCU. Figure 18 shows the HyperTerminal display upon reset.

Figure 18. HyperTerminal Start-Up Display After Reset
AN034601-1012 Page 22 of 25

http://www.zilog.com/docs/devtools/pug0033.pdf
http://www.zilog.com/docs/devtools/pug0033.pdf

Using a Z8051 UART to Implement a 1-Wire® Master with Multiple Slaves
Application Note
9. Press any key on your keyboard. The image shown in Figure 19 will appear.

10. Enter W to write the current DS18S20 and DS2417 data to EEPROM; see Figure 20.

11. Enter R to read the EEPROM content, as shown in Figure 21.

Figure 19. Main Program Output to HyperTerminal

Figure 20. EEPROM Write

Figure 21. EEPROM Read
AN034601-1012 Page 23 of 25

Using a Z8051 UART to Implement a 1-Wire® Master with Multiple Slaves
Application Note
12. Enter E to erase the contents of the EEPROM; see Figure 22.

Results

The HyperTerminal display shows that the Z8051 MCU’s UART module can be used as a
1-Wire master. If configured correctly, it satisfies the timing requirement of the 1-Wire
protocol. For this application, the data from DS18S20 and DS2417 slave devices is suc-
cessfully obtained by the 1-Wire master, and is both written to and read by the DS24B33
slave device.

Summary

This document discusses the implementation of a 1-Wire interface with multiple slaves
using Zilog’s Z8051 microcontroller. These slaves, the DS18S20, DS2417 and DS24B33
devices, are all Dallas Semiconductor products. The 1-Wire implementation is successful
in that the transmission of data up to the bit level passes the timing requirements of the 1-
Wire protocol.

References

The following documents are each associated to the Z8051 MCU and/or are available free
for download from the Zilog website.

Zilog Documentation

• Z51F3220 Product Specification (PS0299)

• Z51F3220 Development Kit User Manual (UM0243)

• Z8051 Tools Product User Guide (PUG0033)

• Develop a Dallas 1-Wire Master Using the Z8F1680 Series of MCUs Application Note
(AN0331)

Additional Documentation

• Application Note 214, Using UART to Implement a 1-Wire Bus Master, Dallas Semi-
conductor, 2002

• Application Note 187, 1-Wire Search Algorithm, Dallas Semiconductor, 2002

Figure 22. EEPROM Erase
AN034601-1012 Page 24 of 25

http://www.zilog.com/docs/appnotes/an0331.pdf
http://www.zilog.com/docs/ps0299.pdf
http://www.zilog.com/docs/devtools/pug0033.pdf
http://www.zilog.com/docs/devtools/um0243.pdf

Using a Z8051 UART to Implement a 1-Wire® Master with Multiple Slaves
Application Note
Customer Support

To share comments, get your technical questions answered, or report issues you may be
experiencing with our products, please visit Zilog’s Technical Support page at 
http://support.zilog.com.

To learn more about this product, find additional documentation, or to discover other fac-
ets about Zilog product offerings, please visit the Zilog Knowledge Base at http://
zilog.com/kb or consider participating in the Zilog Forum at http://zilog.com/forum.

This publication is subject to replacement by a later edition. To determine whether a later
edition exists, please visit the Zilog website at http://www.zilog.com.

DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS.

LIFE SUPPORT POLICY

ZILOG’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE
SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF
THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b)
support or sustain life and whose failure to perform when properly used in accordance with instructions for
use provided in the labeling can be reasonably expected to result in a significant injury to the user. A
critical component is any component in a life support device or system whose failure to perform can be
reasonably expected to cause the failure of the life support device or system or to affect its safety or
effectiveness.

Document Disclaimer

©2012 Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications,
or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES
NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE
INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO
DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED
IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED
HEREIN OR OTHERWISE. The information contained within this document has been verified according
to the general principles of electrical and mechanical engineering.

Z8, Z8 Encore! and Z8 Encore! XP are trademarks or registered trademarks of Zilog, Inc. All other product
or service names are the property of their respective owners.

Warning:
AN034601-1012 Page 25 of 25

http://support.zilog.com
http://www.zilog.com
http://zilog.com/kb
http://zilog.com/kb
http://zilog.com/forum

	Using a Z8051 UART to Implement a 1-Wire
Master with Multiple Slaves
	Abstract
	Overview of the 1-Wire Protocol
	Discussion
	Reset and Presence Signal
	Write Signals
	Read Signal
	Generating Signals Using the UART
	UART Configuration
	Reset and Presence Signal
	Write 0 and Write 1 Signals
	Read Signal
	ROM Commands
	Search Algorithm

	Hardware Implementation
	Software Implementation
	1-Wire Communication-Related Functions
	DS18S20 Operation-Related Functions
	DS2417 Operation-Related Functions
	DS24B33 Operation-Related Functions

	Equipment Used
	Hardware
	Software
	Documentation

	Testing/Demonstrating the Application
	Hardware Setup
	Software Configuration

	Results
	Summary
	References
	Customer Support

